Skip to main content
Log in

Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GST:

Glutathione S-transferase

CDNB:

1-Chloro-2,4-dinitrobenzene

NBC:

p-Nitrobenzyl chloride

EA:

Ethacrynic acid

CuOOH:

Cumene hydroperoxide

References

  1. Alias Z, Clark AG (2010) Adult Drosophila melanogaster glutathione S-transferases: effects of acute treatment with methyl parathion. Pestic Biochem Phys 98:94–98

    Article  CAS  Google Scholar 

  2. Yamamoto K, Suzuki M, Higashiura A, Nakagawa A (2013) Three-dimensional structure of a Bombyx mori Omega-class glutathione transferase. Biochem Biophys Res Commun 438:588–593

    Article  CAS  PubMed  Google Scholar 

  3. Gopal GJ, Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli. Protein J 32:419–425

    Article  CAS  PubMed  Google Scholar 

  4. Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276:58–75

    Article  CAS  PubMed  Google Scholar 

  5. Chrysostomou C, Quandt EM, Marshall NM, Stone E, Georgiou G (2015) An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB. ACS Chem Biol 10:875–882

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Yin K, Li B, Chen L (2013) A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J Hazard Mater 261:646–652

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Yin K, Chen L (2013) Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol 97:5681–5689

    Article  CAS  PubMed  Google Scholar 

  8. Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, Chen L (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res 103:383–390

    Article  CAS  PubMed  Google Scholar 

  9. Rahman MA, Culsum U, Tang W, Zhang SW, Wu G, Liu Z (2016) Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda. Enzyme Microb Technol 85:1–11

    Article  CAS  PubMed  Google Scholar 

  10. Pandey T, Chhetri G, Chinta R, Kumar B, Singh DB, Tripathi T, Singh AK (2015) Functional classification and biochemical characterization of a novel rho class glutathione S-transferase in Synechocystis PCC 6803. FEBS Open Bio 5:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Skopelitou K, Dhavala P, Papageorgiou AC,. Labrou NE (2012) A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily. PLoS ONE 7:342–353

    Article  CAS  Google Scholar 

  12. Stourman NV, Branch MC, Schaab MR, Harp JM, Ladner JE, Armstrong RN (2011) Structure and function of YghU, a nu-class glutathione transferase related to YfcG from Escherichia coli. Biochemistry 50:1274–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang T, Li D-F, Zhou N-Y (2011) Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase. Biochem Biophys Res Commun 410:452–456

    Article  CAS  PubMed  Google Scholar 

  14. Marsh M, Shoemark DK, Jacob A, Robinson C, Cahill B, Zhou N-Y, Williams PA, Hadfield AT (2008) Structure of bacterial glutathione-S-transferase maleyl pyruvate isomerase and implications for mechanism of isomerisation. J Mol Biol 384:165–177

    Article  CAS  PubMed  Google Scholar 

  15. Thom R, Dixon DP, Edwards R, Cole DJ, Lapthorn AJ (2001) The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J Mol Biol 308:949–962

    Article  CAS  PubMed  Google Scholar 

  16. Board GP, Baker TR, Chelvanayagam G, Jermiin SL (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamamoto K, Shigeoka Y, Aso Y, Banno Y, Kimura M, Nakashima T (2009) Molecular and biochemical characterization of a zeta-class glutathione S-transferase of the silkmoth. Pestic Biochem Phys 94:30–35

    Article  CAS  Google Scholar 

  18. Ohtsubo Y, Maruyama F, Mitsui H, Nagata Y, Tsuda M (2012) Complete genome sequence of Acidovorax sp. strain KKS102, a polychlorinated-biphenyl degrader. J Bacteriol 194:6970–6971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitou N. Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  22. Liu H. Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:1–6

    Article  CAS  Google Scholar 

  23. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  24. Di Ilio C, Sacchetta P, Bello ML, Caccuri AM, Federici G (1986) Selenium independent glutathione peroxidase activity associated with cationic forms of glutathione transferase in human heart. J Mol Cel Cardiol 18:983–991

    Article  Google Scholar 

  25. McGuinness M, Mazurkiewicz V, Brennan E, Dowling D (2007) Dechlorination of pesticides by a specific bacterial glutathione S-transferase, BphKLB400: potential for bioremediation. Eng Life Sci 7:611–615

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nat 227:680–685

    Article  CAS  Google Scholar 

  28. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  29. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  CAS  PubMed  Google Scholar 

  30. Mills N (2006) ChemDraw ultra 10.0 CambridgeSoft. 100 CambridgePark Drive, Cambridge

  31. Zeen T, Philip G, Anders M (1998) Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J 331:371–374

    Article  Google Scholar 

  32. Wang X, Martínez M-A, Dai AM, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL, Martínez-Larrañaga M-R (2016) Permethrin-induced oxidative stress and toxicity and metabolism: a review. Environ Res 149:86–104

    Article  CAS  PubMed  Google Scholar 

  33. Birolli WG, Yamamoto KY, de Oliveira JR, Nitschke M, Seleghim MH, Porto AL Biotransformation of dieldrin by the marine fungus Penicillium miczynskii CBMAI 930. Biocatal Agric Biotech 4:39–43

  34. Brennan E, McGuinness M, Dowling DN (2009) Bioinformatic analysis and in vitro site-directed mutagenesis of conserved amino acids in BphK LB400, a specific bacterial glutathione transferase. Int Biodeter Biodegrad 63:928–932

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Yuji Nagata of the graduate school of life sciences, Tohoku University, Japan, for granting us the permission to use the strain. We also wish to thank Japan collection of microorganism (JCM) for providing us with the strain. This work was supported by the University of Malaya IPPP [PG170-2016A]. One of the authors (DS) would like to thank Bayero University, Nigeria, for the financial assistance.

Funding

This study was funded by University of Malaya IPPP Grant [PG170-2016A].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zazali Alias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, D., Alias, Z. Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102. Protein J 37, 261–269 (2018). https://doi.org/10.1007/s10930-018-9774-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9774-x

Keywords

Navigation