Skip to main content
Log in

Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Escherichia coli PBP5, a DD-carboxypeptidase (DD-CPase), helps in maintaining cell shape and intrinsic β-lactam resistance. Though PBP5 does not have β-lactamase activity under physiological pH, it has a common but shorter Ω-like loop resembling class A β-lactamases. However, such Ω-like loop lacks the key glutamic acid residue that is present in β-lactamases. It is speculated that β-lactamases and DD-CPases might have undergone divergent evolution leading to distinct enzymes with different substrate specificities and functions indicating the versatility of the Ω-loops. Nonetheless, direct experimental evidence favoring the idea is insufficient. Here, aiming to investigate the effect of introducing a glutamic acid residue in the PBP5 Ω-like loop, we substituted A184 to E to create PBP5_A184E. Expression of PBP5_A184E in E. coli ∆PBP5 mutant elevates the β-lactam resistance, especially for cephalosporins. However, like PBP5, PBP5_A184E has the ability to complement the aberrantly shaped E. coli septuple PBP mutant indicating an unaffected in vivo DD-CPase activity. Biochemical and bioinformatics analyses have substantiated the dual enzyme nature of the mutated enzyme possessing both DD-CPase and β-lactamase activities. Therefore, substitution of A184 to E of Ω-like loop alone can introduce the cephalosporinase activity in E. coli PBP5 supporting the phenomenon of a single amino acid polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ghuysen J-M (1991) Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45(1):37–67

    Article  CAS  Google Scholar 

  2. Ghosh AS, Chowdhury C, Nelson DE (2008) Physiological functions of d-alanine carboxypeptidases in Escherichia coli. Trends Microbiol 16(7):309–317

    Article  CAS  Google Scholar 

  3. Gonzalez-Leiza SM, de Pedro MA, Ayala JA (2011) AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli. J Bacteriol 193(24):6887–6894. https://doi.org/10.1128/JB.05764-11

    Article  CAS  Google Scholar 

  4. Sarkar SK, Chowdhury C, Ghosh AS (2010) Deletion of penicillin-binding protein 5 (PBP5) sensitises Escherichia coli cells to β-lactam agents. Int J Antimicrob Agents 35(3):244–249

    Article  CAS  Google Scholar 

  5. Nelson DE, Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182(6):1714–1721

    Article  CAS  Google Scholar 

  6. Peters K, Kannan S, Rao VA, Biboy J, Vollmer D, Erickson SW, Lewis RJ, Young KD, Vollmer W (2016) The redundancy of peptidoglycan carboxypeptidases ensures robust cell shape maintenance in Escherichia coli. MBio 7(3):e00819

    Article  CAS  Google Scholar 

  7. Nelson DE, Young KD (2001) Contributions of PBP 5 anddd-carboxypeptidase penicillin binding proteins to maintenance of cell shape in Escherichia coli. J Bacteriol 183(10):3055–3064

    Article  CAS  Google Scholar 

  8. Sarkar SK, Dutta M, Chowdhury C, Kumar A, Ghosh AS (2011) PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli. Microbiology 157(9):2702–2707

    Article  CAS  Google Scholar 

  9. Nicholas RA, Strominger JL (1988) Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties. J Biol Chem 263(4):2034–2040

    CAS  Google Scholar 

  10. Urbach C, Fastrez J, Soumillion P (2008) A new family of cyanobacterial penicillin-binding proteins a missing link in the evolution of class a β-lactamases. J Biol Chem 283(47):32516–32526

    Article  CAS  Google Scholar 

  11. Dutta M, Kar D, Bansal A, Chakraborty S, Ghosh AS (2015) A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology 161(4):895–902

    Article  CAS  Google Scholar 

  12. Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70(1):209–246

    Article  CAS  Google Scholar 

  13. Nicholas RA, Krings S, Tomberg J, Nicola G, Davies C (2003) Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli implications for deacylation of the acyl-enzyme complex. J Biol Chem 278(52):52826–52833

    Article  CAS  Google Scholar 

  14. Chowdhury C, Nayak TR, Young KD, Ghosh AS (2010) A weak DD-carboxypeptidase activity explains the inability of PBP 6 to substitute for PBP 5 in maintaining normal cell shape in Escherichia coli. FEMS Microbiol Lett 303(1):76–83

    Article  CAS  Google Scholar 

  15. Chambers HF, Sachdeva MJ, Hackbarth CJ (1994) Kinetics of penicillin binding to penicillin-binding proteins of Staphylococcus aureus. Biochem J 301(1):139–144

    Article  CAS  Google Scholar 

  16. Di Guilmi AM, Mouz N, Pétillot Y, Forest E, Dideberg O, Vernet T (2000) Deacylation kinetics analysis of Streptococcus pneumoniae penicillin-binding protein 2x mutants resistant to β-lactam antibiotics using electrospray ionization–mass spectrometry. Anal Biochem 284(2):240–246

    Article  Google Scholar 

  17. Frére J-M, Leyh-Bouille M, Ghuysen J-M, Nieto M, Perkins HR (1976) [51] Exocellular dd-carboxypeptidases-transpeptidases from Streptomyces. Methods Enzymol 45:610–636

    Article  Google Scholar 

  18. Chowdhury C, Kar D, Dutta M, Kumar A, Ghosh AS (2012) Moderate deacylation efficiency of DacD explains its ability to partially restore beta-lactam resistance in Escherichia coli PBP5 mutant. FEMS Microbiol Lett 337(1):73–80

    Article  CAS  Google Scholar 

  19. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80(2):374–381

    Article  CAS  Google Scholar 

  20. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32(suppl 2):W321–W326

    Google Scholar 

  21. Nilsen T, Ghosh AS, Goldberg MB, Young KD (2004) Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli. Mol Microbiol 52(4):1045–1054

    Article  CAS  Google Scholar 

  22. Banerjee S, Pieper U, Kapadia G, Pannell LK, Herzberg O (1998) Role of the Ω-Loop in the activity, substrate specificity, and structure of class a β-lactamase. Biochemistry 37(10):3286–3296

    Article  CAS  Google Scholar 

  23. Sun T, Nukaga M, Mayama K, Braswell EH, Knox JR (2003) Comparison of β-lactamases of classes a and D: 1.5-Å crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci 12(1):82–91

    Article  CAS  Google Scholar 

  24. Ropy A, Cabot G, Sánchez-Diener I, Aguilera C, Moya B, Ayala JA, Oliver A (2015) Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-Lactam resistance, and peptidoglycan structure. Antimicrob Agents Chemother 59(7):3925–3934

    Article  CAS  Google Scholar 

  25. Smith JD, Kumarasiri M, Zhang W, Hesek D, Lee M, Toth M, Vakulenko S, Fisher JF, Mobashery S, Chen Y (2013) Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 57(7):3137–3146

    Article  CAS  Google Scholar 

  26. Haenni M, Moreillon P (2006) Mutations in penicillin-binding protein (PBP) genes and in non-PBP genes during selection of penicillin-resistant Streptococcus gordonii. Antimicrob Agents Chemother 50(12):4053–4061

    Article  CAS  Google Scholar 

  27. Terao Y, Miyamoto K, Ohta H (2006) Introduction of single mutation changes arylmalonate decarboxylase to racemase. Chem Commun 34:3600–3602

    Article  Google Scholar 

  28. Seebeck FP, Guainazzi A, Amoreira C, Baldridge KK, Hilvert D (2006) Stereoselectivity and expanded substrate scope of an engineered PLP-dependent aldolase. Angew Chem Int Ed 45(41):6824–6826

    Article  CAS  Google Scholar 

  29. Seebeck FP, Hilvert D (2003) Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J Am Chem Soc 125(34):10158–10159

    Article  CAS  Google Scholar 

  30. Davies C, White SW, Nicholas RA (2001) Crystal structure of a deacylation-defective mutant of penicillin-binding protein 5 at 2.3-Å resolution. J Biol Chem 276(1):616–623

    Article  CAS  Google Scholar 

  31. Stefanova ME, Davies C, Nicholas RA, Gutheil WG (2002) pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. Biochim et Biophys Acta 1597(2):292–300

    Article  CAS  Google Scholar 

  32. Chowdhury C, Ghosh AS (2011) Differences in active-site microarchitecture explain the dissimilar behaviors of PBP5 and 6 in Escherichia coli. J Mol Graph Model 29(5):650–656

    Article  CAS  Google Scholar 

  33. Zhang W, Shi Q, Meroueh SO, Vakulenko SB, Mobashery S (2007) Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry 46(35):10113–10121

    Article  CAS  Google Scholar 

  34. Malhotra KT, Nicholas RA (1992) Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes d-alanine carboxypeptidase activity without affecting penicillin binding. J Biol Chem 267(16):11386–11391

    CAS  Google Scholar 

  35. Shi Q, Meroueh SO, Fisher JF, Mobashery S (2008) Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. J Am Chem Soc 130(29):9293–9303

    Article  CAS  Google Scholar 

  36. Adachi H, Ohta T, Matsuzawa H (1991) Site-directed mutants, at position 166, of RTEM-1 beta-lactamase that form a stable acyl-enzyme intermediate with penicillin. J Biol Chem 266(5):3186–3191

    CAS  Google Scholar 

  37. Escobar WA, Tan AK, Fink AL (1991) Site-directed mutagenesis of. beta.-lactamase leading to accumulation of a catalytic intermediate. Biochemistry 30(44):10783–10787

    Article  CAS  Google Scholar 

  38. Strynadka NC, Adachi H, Jensen SE, Johns K, Sielecki A, Betzel C, Sutoh K, James MN (1992) Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359(6397):700–705

    Article  CAS  Google Scholar 

  39. Nemmara VV, Dzhekieva L, Subarno Sarkar K, Adediran S, Duez C, Nicholas RA, Pratt RF (2011) Substrate specificity of low-molecular mass bacterial DD-peptidases. Biochemistry 50(46):10091–10101

    Article  CAS  Google Scholar 

  40. Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER (2005) Structure of the wild-type TEM-1 β-lactamase at 1.55 Å and the mutant enzyme Ser70Ala at 2.1 Å suggest the mode of noncovalent catalysis for the mutant enzyme. Acta Crystallogr Sect D 61(8):1072–1079

    Article  Google Scholar 

  41. Leszczynski JF, Rose GD (1986) Loops in globular proteins: a novel category of secondary structure. Science 234(4778):849–855

    Article  CAS  Google Scholar 

  42. Peimbert M, Segovia L (2003) Evolutionary engineering of a β-lactamase activity on a D-Ala D-Ala transpeptidase fold. Protein Eng 16(1):27–35

    Article  CAS  Google Scholar 

  43. Gordon E, Mouz N, Duee E, Dideberg O (2000) The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J Mol Biol 299(2):477–485

    Article  CAS  Google Scholar 

  44. Pares S, Mouz N, Petillot Y, Hakenbeck R, Dideberg O (1996) X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat Struct Mol Biol 3(3):284–289

    Article  CAS  Google Scholar 

  45. Bansal A, Kar D, Murugan RA, Mallick S, Dutta M, Pandey SD, Chowdhury C, Ghosh AS (2015) A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase. Microbiology 161(5):1081–1091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from Department of Biotechnology, Govt. of India (grant # BT/PR8539/BRB/10/1235/2013) to ASG. DK and MD are supported by Indian Institute of Technology Kharagpur. SDP thanks, Science and Engineering Research Board (SERB), Govt. of India for National Post-doctoral Fellowship vide grant # PDF/2015/000011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya S. Ghosh.

Ethics declarations

Conflict of interest

All the authors declare that there exists no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, D., Pandey, S.D., Mallick, S. et al. Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity. Protein J 37, 122–131 (2018). https://doi.org/10.1007/s10930-018-9765-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9765-y

Keywords

Navigation