Skip to main content
Log in

Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Nonribosomal peptide synthetases (NRPS) are multifunctional proteins that catalyze the synthesis of the peptide products with enormous biological potential. The process of biosynthesis starts with the adenylation (A) domain, which during the catalytic cycle undergoes extensive structural rearrangements. In this paper, we present the first study of the tyrocidine synthetase 1 A-domain (TycA-A) fluorescence properties. The TycA-A protein contains five potentially fluorescent Trp residues at positions 227, 301, 323, 376 and 406. The contribution of each Trp to the TycA-A emission was determined using protein variants bearing single Trp to Phe substitutions. The accessibility of the Trp side chains during adenylation showed that only W227 is affected by substrate binding. The protein variant containing solely fluorescent W227 residue was constructed and further used as a probe to explore the binding effect of different non-cognate amino acid substrates. The results indicate a different accessibility of W227 residue in the presence of non-cognate amino acids, which might offer an explanation for the higher aminoacyl-adenenylate leakage. Overall, our results suggest that intrinsic tryptophan fluorescence could be used as a method to probe the effect of substrate binding on the local structure in NRPS adenylation domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A-domain:

Adenylation domain

T-domain:

Thiolation domain

C-domain:

Condensation domain

TE-domain:

Thioesterase domain

TycA-A:

Tyrocidine synthetase 1 adenylation domain

NRPS:

Nonsibosomal peptide synthetases

ATP:

Adensine triphosphate

PPi :

Pyrophosphate

SrfAC:

Surfactin synthetase

ASA:

Accessible surface area

PheA:

Adenylation domain from gramicidin S synthetase 1

PDB:

Protein data bank

References

  1. Gulick AM (2009) Conformational dynamic in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4(10):811–827

    Article  CAS  Google Scholar 

  2. Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15(12):799–807

    Article  CAS  Google Scholar 

  3. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20(2):234–240

    Article  CAS  Google Scholar 

  4. Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. BioChemistry 41(30):9718–9726

    Article  CAS  Google Scholar 

  5. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505

    Article  CAS  Google Scholar 

  6. Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, Struck A-W, Smith CP, Micklefield J (2012) Introduction of a non-natural amino acid into a nonribosomal peptide antibiotic by modification of adenylation domain specificity. Angew Chem Int Ed Engl 51(29):7181–7184

    Article  CAS  Google Scholar 

  7. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269(5220):69–72

    Article  CAS  Google Scholar 

  8. Schneider A, Stachelhaus T, Marahiel MA (1998) Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol Gen Genet 257(3):308–318

    Article  CAS  Google Scholar 

  9. Tanovic A, Samel SA, Essen L-O, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321(5889):659–663

    Article  CAS  Google Scholar 

  10. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19(2):188–198

    Article  CAS  Google Scholar 

  11. Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen L-O (2007) Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15(7):781–792

    Article  CAS  Google Scholar 

  12. Liu Y, Zheng T, Bruner SD (2011) Structural basis for phosphopantetheinyl carrier domain interactions in the terminal module of nonribosomal peptide synthetases. Chem Biol 18(11):1482–1488

    Article  CAS  Google Scholar 

  13. Miller BR, Sundlov JA, Drake EJ, Makin TA, Gulick AM (2014) Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Proteins 82(10):2691–2702

    Article  CAS  Google Scholar 

  14. Chen WH, Li K, Guntaka NS, Bruner SD (2016) Interdomain and intermodule organization in epimerization domain containing nonribosomal peptide synthetases. ACS Chem Biol 11(8):2293–2303

    Article  CAS  Google Scholar 

  15. Reimer JM, Aloise MN, Harrison PM, Schmeing TM (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529(7585):239–242

    Article  CAS  Google Scholar 

  16. Mitchell CA, Shi C, Aldrich CC, Gulick AM (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. BioChemistry 51(15):3252–3263

    Article  CAS  Google Scholar 

  17. Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4(3):287–298

    Article  CAS  Google Scholar 

  18. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16(14):4174–4183

    Article  CAS  Google Scholar 

  19. Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC (2003) The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. BioChemistry 42(10):2866–2873

    Article  CAS  Google Scholar 

  20. Sundlov JA, Fontaine DM, Southworth TL, Branchini BR, Gulick AM (2012) Crystal structure of fire fly luciferase in a second catalytic conformation supports a domain alternation mechanism. BioChemistry 51(33):6493–6495

    Article  CAS  Google Scholar 

  21. May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99(19):12120–12125

    Article  CAS  Google Scholar 

  22. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL (2010) Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem 285(4):2415–2427

    Article  CAS  Google Scholar 

  23. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Leigh Allen C, Skiniotis G, Aldrich CC, Gulick AM (2016) Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529(7585):235–238

    Article  CAS  Google Scholar 

  24. Khalil S, Pawelek PD (2009) Ligand-induced conformational rearrangements promote interaction between the Escherichia coli enterobactin biosynthetic proteins EntE and EntB. J Mol Biol 393(3):658–671

    Article  CAS  Google Scholar 

  25. Zettler J, Mootz HD (2010) Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases. FEBS J 277(5):1159–1171

    Article  CAS  Google Scholar 

  26. Bučević-Popović V, Sprung M, Soldo B, Pavela-Vrančič M (2012) The A9 core sequence from NRPS adenylation domain is relevant for thioester formation. Chembiochem 13(13):1913–1920

    Article  Google Scholar 

  27. Willard L (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31(13):3316–3319

    Article  CAS  Google Scholar 

  28. DeLano WL (2002) The PyMOL molecular graphics system, version 1.1. Schrödinger, LLC

  29. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. BioChemistry 37(28):9976–9982

    Article  CAS  Google Scholar 

  30. Bučević-Popović V, Pavela-Vrančič M, Dieckmann R, Von Döhren H (2006) Relationship between activating and editing functions of the adenylation domain of apo-tyrocidin synthetase 1 (apo-TY1). Biochimie 88(3–4):265–270

    Google Scholar 

  31. Lakowitz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  32. Moens PDJ, Helms MK, Jameson DM (2004) Detection of tryptophan to tryptophan energy transfer in proteins. Protein J 23(1):79–83

    Article  CAS  Google Scholar 

  33. Dieckmann R, Pavela-Vrancic M, von Döhren H, Kleinkauf H (1999) Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1. J Mol Biol 288(1):129–140

    Article  CAS  Google Scholar 

  34. Duckworth BP, Wilson DJ, Aldrich CC (2016) Measurement of nonribosomal peptide synthetases hydroxylamine release assay. Methods Mol Biol 1401:53–61

    Article  Google Scholar 

  35. Pavela-Vrancic M, Dieckmann R, von Döhren H (2004) ATPase activity of non-ribosomal peptide synthetases. Biochim Biophys Acta 1696(1):83–91

    Article  CAS  Google Scholar 

  36. Pavela-Vrancic M, Dieckmann R, Döhren HV, Kleinkauf H (1999) Editing of non-cognate aminoacyl adenylates by peptide synthetases. Biochem J 342:715–719

    Article  CAS  Google Scholar 

  37. Villiers BRM, Hollfelder F (2009) Mapping the limits of substrate specificity of the adenylation domain of TycA. Chembiochemistry 10(4):671–682

    Article  CAS  Google Scholar 

  38. Villiers B, Hollfelder F (2011) Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Chem Biol 18(10):1290–1299

    Article  CAS  Google Scholar 

  39. Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC (2006) Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme’s mechanism and selectivity. BioChemistry 45(51):15495–15504

    Article  CAS  Google Scholar 

  40. Luo L, Burkart MD, Stachelhaus T, Walsh CT (2001) Substrate recognition and selection by the initiation module PheATE of gramicidin S synthetase. J Am Chem Soc 123(45):11208–11218

    Article  CAS  Google Scholar 

  41. Challis GL, Ravel J, Townsend C (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224

    Article  CAS  Google Scholar 

  42. Subramaniam V, Jovin TM, Rivera-Pomar RV (2001) Aromatic amino acids are critical for stability of the bicoid homeodomain. J Biol Chem 276(24):21506–21511

    Article  CAS  Google Scholar 

  43. Chen BE, Lin MG, Lo HF, Wang T-F, Chi MC, Lin LL (2013) Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK. Int J Biol Macromol 52:231–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Maja Pavela-Vrančić for providing a financial support through the Croatian Ministry of Science, Education and Sports Grant Number 177-0000000-2962.

Author Contributions

MŠ and VBP designed the experiments, MŠ wrote the manuscript; MŠ and BS performed the experiments; MŠ, SO and VBP analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilda Šprung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10930_2017_9714_MOESM1_ESM.jpg

Supplementary Fig. 1 The quenching of 227W fluorescence was performed in Tris buffer (50 mM, pH 7.5) supplemented with MgCl2 (20 mM) at 25 °C by adding the aliquots of l-Phe, up to the concentration of 75 µM. (JPG 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šprung, M., Soldo, B., Orhanović, S. et al. Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence. Protein J 36, 202–211 (2017). https://doi.org/10.1007/s10930-017-9714-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9714-1

Keywords

Navigation