Skip to main content

Advertisement

Log in

High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure–function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P212121 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GGT:

Gamma glutamyl transpeptidase

BlGGT:

Bacillus licheniformis gamma glutamyl transpeptidase

IPTG:

Isopropyl-thio-β-d-galactoside

Ni–NTA:

Nickel-nitrilotriacetic acid

PEG:

Polyethylene glycol

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

FT:

Flow through

References

  1. Suzuki H, Kumagai H (2002) Autocatalytic processing of γ-glutamyltranspeptidase. J Biol Chem 277:43536–43543. doi:10.1074/jbc.M207680200

    Article  CAS  Google Scholar 

  2. Castellano I, Merlino A (2012) γ-glutamyltranspeptidases: Sequence, structure, biochemical properties, and biotechnological applications. Cell Mol Life Sci 69:3381–3394. doi:10.1007/s00018-012-0988-3

    Article  CAS  Google Scholar 

  3. Godwin AK, Meister A, O’Dwyer PJ, Huang CS, Hamilton TC, Anderson ME (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U. S. A 89:3070–3074. doi:10.1073/pnas.89.7.3070

    Article  CAS  Google Scholar 

  4. Hanigan MH, Gallagher BC, Townsend DM, Gabarra V (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis 20:553–559. doi:10.1093/carcin/20.4.553

    Article  CAS  Google Scholar 

  5. Emdin M, Pompella A, Paolicchi A (2005) Gamma-glutamyltransferase, atherosclerosis, and cardiovascular disease: Triggering oxidative stress within the plaque. Circulation 112:2078–2080. doi:10.1161/circulationaha.105.571919

    Article  Google Scholar 

  6. Lee DH, Jacobs DR Jr, Gross M, Kiefe CI, Roseman J, Lewis CE, Steffes M (2003) Gamma-glutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin Chem 49:1358–1366. doi:10.1373/49.8.1358

    Article  CAS  Google Scholar 

  7. Han L, Hiratake J, Kamiyama A, Sakata K (2007) Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase. Biochemistry 46:1432–1447. doi:10.1021/bi061890j

    Article  CAS  Google Scholar 

  8. Mu W, Zhang T, Jiang B (2015) An overview of biological production of L-theanine. Biotechnol Adv 33:335–342. doi:10.1016/j.biotechadv.2015.04.004

    Article  CAS  Google Scholar 

  9. Suzuki H, Yamada C, Kato K (2007) Gamma-glutamyl compounds and their enzymatic production using bacterial gamma-glutamyltranspeptidase. Amino Acids 32:333–340. doi:10.1007/s00726-006-0416-9

    Article  CAS  Google Scholar 

  10. Guan C, Liu Y, Shao Y, Cui T, Liao W, Ewel A, Whitaker R, Paulus H (1998) Characterization and functional analysis of the cis-autoproteolysis active center of glycosylasparaginase. J Biol Chem 273:9695–9702. doi:10.1074/jbc.273.16.9695

    Article  CAS  Google Scholar 

  11. Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel PM, Schmidt M (1996) Analysis of mammalian 20 S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J 15:6887–6898

    CAS  Google Scholar 

  12. Chevalier C, Thiberge JM, Ferrero RL, Labigne A (1999) Essential role of Helicobacter pylori gamma-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol Microbiol 31:1359–1372. doi:10.1046/j.1365-2958.1999.01271.x

    Article  CAS  Google Scholar 

  13. King JB, West MB, Cook PF, Hanigan MH (2009) A novel, species-specific class of uncompetitive inhibitors of γ-glutamyl transpeptidase. J Biol Chem 284:9059–9065. doi:10.1074/jbc.M809608200

    Article  CAS  Google Scholar 

  14. Neil GL, Earhart RH (1985) Acivicin in 1985. Adv Enzyme Regul 24:179–205. doi:10.1016/0065-2571(85)90076-7

    Google Scholar 

  15. Chittur SV, Klem TJ, Shafer CM, Jo Davisson V (2001) Mechanism for acivicin inactivation of triad glutamine amidotransferases. Biochemistry 40:876–887. doi:10.1021/bi0014047

    Article  CAS  Google Scholar 

  16. Verma VV, Gupta R, Goel M (2015) Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies. Biol Direct 10:49. doi:10.1186/s13062-015-0080-7

    Article  Google Scholar 

  17. Capraro MA, Hughey RP (1985) Use of acivicin in the determination of rate constants for turnover of rat renal γ-glutamyltranspeptidase. J Biol Chem 260:3408–3412

    CAS  Google Scholar 

  18. Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–9. doi:10.1110/ps.051812706

    Article  CAS  Google Scholar 

  19. Wang Q, Min C, Zhu F, Xin Y, Zhang S, Luo L, Yin Z (2011) Production of bioactive γ-glutamyl transpeptidase in Escherichia coli using SUMO fusion partner and application of the recombinant enzyme to l-theanine synthesis. Curr Microbiol 62:1535–1541. doi:10.1007/s00284-011-9891-7

    Article  CAS  Google Scholar 

  20. L.-L. Lin, A. Merlino (2013) Heterogeneous nucleation helps the search for initial crystallization conditions of γ-glutamyl transpeptidase from Bacillus licheniformis. Acta Crystallogr Sect F 69:669–672. doi:10.1107/S1744309113012165

    Article  CAS  Google Scholar 

  21. Pica A, Chi MC, Chen YY, D’Ischia M, Lin LL, Merlino A (2016) The maturation mechanism of γ-glutamyl transpeptidases: insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis and from site-directed mutagenesis studies. Biochim Biophys Acta 1864:195–203. doi:10.1016/j.bbapap.2015.10.006

    Article  CAS  Google Scholar 

  22. Tiwary E, Gupta R (2010) A novel combination as ungual enhancer for prospective topical application. J Pharm Sci 99:4866–4873. doi:10.1002/jps.22199

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  CAS  Google Scholar 

  25. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymo 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  26. E. Potterton, P. Briggs, M. Turkenburg, E. Dodson (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr Sect D 59:1131–1137. doi:10.1107/S0907444903008126

    Article  Google Scholar 

  27. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. doi:10.1107/S0021889807021206

    Article  CAS  Google Scholar 

  28. Lin L-L, Chen Y-Y, Chi M-C, Merlino A (2014) Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: Opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. Biochim Biophys Acta. 1844:1523–1529. doi:10.1016/j.bbapap.2014.04.016

    Article  CAS  Google Scholar 

  29. B.W. Matthews (1968) Solvent content of protein crystals. J Mol Biol. doi:10.1016/0022-2836(68)90205-2.

    Google Scholar 

  30. Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2006) Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate. Proc Natl Acad Sci U. S. A. 103:6471–6476. doi:10.1073/pnas.0511020103

    Article  CAS  Google Scholar 

  31. Ida T, Suzuki H, Fukuyama K, Hiratake J, Wada K (2014) Structure of Bacillus subtilis γ-glutamyl-transpeptidase in complex with acivicin: Diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue. Acta Crystallogr Sect D 70:607–614. doi:10.1107/S1399004713031222

    Article  CAS  Google Scholar 

  32. Williams K, Cullati S, Sand A, Biterova EI, Barycki JJ (2010) Crystal structure of acivicin-inhibited γ-glutamyltranspeptidase reveals critical roles for its C-terminus in autoprocessing and catalysis. Biochemistry 48:2459–2467. doi:10.1021/bi8014955.Crystal.

    Article  Google Scholar 

  33. Wada K, Irie M, Suzuki H, Fukuyama K (2010) Crystal structure of the halotolerant gamma-glutamyltranspeptidase from Bacillus subtilis in complex with glutamate reveals a unique architecture of the solvent-exposed catalytic pocket. FEBS J 277:1000–1009. doi:10.1111/j.1742-4658.2009.07543.x

    Article  CAS  Google Scholar 

  34. Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K (2007) Crystal structure of the γ-glutamyltranspeptidase precursor protein from Escherichia coli: structural changes upon autocatalytic processing and implications for the maturation mechanism. J Biol Chem 282:2433–2439. doi:10.1074/jbc.M607490200

    Article  CAS  Google Scholar 

  35. Wada K, Hiratake J, Irie M, Okada T, Yamada C, Kumagai H, Suzuki H, Fukuyama K (2008) Crystal structures of Escherichia coli gamma-glutamyltranspeptidase in complex with azaserine and acivicin: novel mechanistic implication for inhibition by glutamine antagonists. J Mol Biol 380:361–372. doi:10.1016/j.jmb.2008.05.007

    Article  CAS  Google Scholar 

  36. Kamiyama A, Nakajima M, Han L, Wada K, Mizutani M, Tabuchi Y, Kojima-Yuasa A, Matsui-Yuasa I, Suzuki H, Fukuyama K, Watanabe B, Hiratake J (2016) Phosphonate-based irreversible inhibitors of human γ-glutamyl transpeptidase (GGT). GGsTop is a non-toxic and highly selective inhibitor with critical electrostatic interaction with an active-site residue Lys562 for enhanced inhibitory activity. Bioorg Med Chem 24:5340–5352. doi:10.1016/j.bmc.2016.08.050

    Article  CAS  Google Scholar 

  37. Boanca G, Sand A, Okada T, Suzuki H, Kumagai H, Fukuyama K, Barycki JJ (2007) Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad. J Biol Chem 282:534–541. doi:10.1074/jbc.M607694200

    Article  CAS  Google Scholar 

  38. Morrow AL, Williams K, Sand A, Boanca G, Barycki JJ (2007) Characterization of Helicobacter pylori gamma-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis., Biochemistry 46:13407–13414. doi:10.1021/bi701599e

    Article  CAS  Google Scholar 

  39. West MB, Chen Y, Wickham S, Heroux A, Cahill K, Hanigan MH, Mooers BHM (2013) Novel insights into eukaryotic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme. J Biol Chem 288:31902–31913. doi:10.1074/jbc.M113.498139

    Article  CAS  Google Scholar 

  40. Terzyan SS, A.W.G. Burgett, Heroux A, Smith CA, B.H.M. Mooers, Hanigan MH (2015) Human γ-glutamyl transpeptidase 1: structures of the free enzyme, inhibitor-bound tetrahedral transition states, and glutamate-bound enzyme reveal novel movement within the active site during catalysis. J Biol Chem 290:17576–17586. doi:10.1074/jbc.M115.659680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CSIR (Council of Scientific and Industrial Research), Government of India through Grant No. 38 (1312)/11/EMR-II to the PI (Dr. Manisha Goel). Shobha Kumari also acknowledges the CSIR-JRF fellowship (09/045(1094)/2011-EMR-1). The authors gratefully acknowledge National Institute of Immunology, New Delhi for providing X-ray diffraction data collection facility. The authors also acknowledge the CIF (Central Instrumentation Facility) at University of Delhi South Campus for MALDI studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Goel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Pal, R.K., Gupta, R. et al. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility. Protein J 36, 7–16 (2017). https://doi.org/10.1007/s10930-017-9693-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9693-2

Keywords

Navigation