Skip to main content
Log in

Purification and Characterization of the Membrane-Bound Quinoprotein Glucose Dehydrogenase of Gluconacetobacter diazotrophicus PAL 5

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Acetic acid bacteria oxidize a great number of substrates, such as alcohols and sugars, using different enzymes that are anchored to the membrane. In particular, Gluconacetobacter diazotrophicus is distinguished for its N2-fixing activity under high-aeration conditions. Ga. diazotrophicus is a true endophyte that also has membrane-bound enzymes to oxidize sugars and alcohols. Here we reported the purification and characterization of the membrane-bound glucose dehydrogenase (GDHm), an oxidoreductase of Ga. diazotrophicus. GDHm was solubilized and purified by chromatographic methods. Purified GDHm was monomeric, with a molecular mass of 86 kDa. We identified the prosthetic group as pyrroloquinoline quinone, whose redox state was reduced. GDHm showed an optimum pH of 7.2, and its isoelectric point was 6.0. This enzyme preferentially oxidized d-glucose, 2-deoxy-d-glucose, d-galactose and d-xylose; its affinity towards glucose was ten times greater than that of E. coli GDHm. Finally, Ga. diazotrophicus GDHm was capable of reducing quinones such as Q 1, Q 2, and decylubiquinone; this activity was entirely abolished in the presence of micromolar concentrations of the inhibitor, myxothiazol. Hence, our purification method yielded a highly purified GDHm whose molecular and kinetic parameters were determined. The possible implications of GDHm activity in the mechanism for reducing competitor microorganisms, as well as its participation in the respiratory system of Ga. diazotrophicus, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATCC:

American type culture collection

Cyt-a1:

Cytochrome a1

DMSO:

Dimethyl sulfoxide

FAD:

Flavin adenine dinucleotide

KP-T:

Phosphate buffer plus 0.1 % Triton X-100

NTB:

Nitro blue tetrazolium

Q7:

Quinone seven isoprene

References

  1. Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42:2045–2056

    Article  CAS  Google Scholar 

  2. Alvarez B, Martínez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41:918–924

    Article  CAS  Google Scholar 

  3. Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) d-glucose dehydrogenase from Gluconobacter suboxydans: solubilization, purification and characterization. Agric Biol Chem 45:851–861

    Article  CAS  Google Scholar 

  4. Ameyama M, Nonobe M, Shinagawa E, Matsushita K, Takimoto K, Adachi O (1986) Purification and characterization of the quinoprotein. d-glucose dehydrogenase apoenzyme from Escherichia coli. Agric Biol Chem 50:49–57

    Article  CAS  Google Scholar 

  5. Anthony C, Zatman LJ (1967) The microbial oxidation of methanol: the prosthetic group of alcohol dehydrogenase of Pseudomonas sp. M27; A new oxidoreductase prosthetic group. Biochem J 104:960–969

    CAS  Google Scholar 

  6. Attwod MM, Van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72:101–105

    Article  Google Scholar 

  7. Bernardelli CE, Luna MF, Galar ML, Boiardi JL (2001) Periplasmic PQQ-dependent glucose oxidation in free-living and symbiotic rhizobia. Curr Microbiol 42:310–315

    Article  CAS  Google Scholar 

  8. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro MM, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza FG, Quintana Flores VM, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco AB, Carvalho D, Lery L, Bisch P, Rössle SC, Ürményi T, Pereira AR, Silva R, Rondinelli E, von Krüger W, Martins O, Baldani JI, Ferreira PCG (2009) Complete genome sequence of sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom 10:450

    Article  Google Scholar 

  9. Bont JAM, Dokter P, van Schie BJ, van Dijken JP, Frank JZNJ, Duine J, Kuenen JG (1984) Role of the quinoprotein glucose dehydrogenase in gluconic acid production by Acinetobacter calcoaceticus. Ant van Leeuwenhoek 50:76–77

    Article  Google Scholar 

  10. Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108(23):31

    Google Scholar 

  11. Cleton-Jansen AM, Goosen N, Odle G, van de Putte P (1988) Nucleotide sequence of the gene coding for quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Nucleic Acids Res 16:6228

    Article  CAS  Google Scholar 

  12. Cozier GE, Anthony C (1995) Structure of quinoprotein glucose dehydrogenase of Escherichia coli modeled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J 312:679–685

    CAS  Google Scholar 

  13. Cozier GE, Salleh RA, Anthony C (1999) Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine. Biochem J 340:639–647

    Article  CAS  Google Scholar 

  14. Dokter P, Frank J, Duine JA (1986) Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41. Biochem J 239:163–167

    CAS  Google Scholar 

  15. Duine JA, Frank JZNJ, Jongejan JA (1987) Enzymology of quinoproteins. Adv Enzym Relat Areas Mol Biol 59:169–212

    CAS  Google Scholar 

  16. Duine JA, Jongejan JA (1989) Quinoproteins, enzymes with pyrroloquinoline quinone as cofactor. Ann Rev Biochem 58:403–426

    Article  CAS  Google Scholar 

  17. Dulley JR, Grieve PA (1975) A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64:136–141

    Article  CAS  Google Scholar 

  18. Elias MD, Nakamura S, Migita CT, Miyoshi H, Toyama H, Matsushita K, Adachi O, Yamada M (2004) Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase. J Biol Chem 279:3078–3083

    Article  CAS  Google Scholar 

  19. Escamilla JE, Ramirez R, Del Arenal IP, Zarzosa G, Linares V (1987) Expression of cytochrome oxidase in Bacillus cereus; effects of oxygen tension and carbon source. J Gen Microbiol 133:3549–3555

    CAS  Google Scholar 

  20. Flores-Encarnación M, Contreras-Zentella M, Soto-Urzua L, Aguilar RG, Baca BE, Escamilla JE (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J Bacteriol 181:6987–6995

    Google Scholar 

  21. Geiger O, Görisch H (1989) Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Ca2+ ions are necessary for re-activation. Biochem J 261:415–421

    CAS  Google Scholar 

  22. Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Dobereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a Nitrogen-Fixing Acetic Acid Bacterium Associated with Sugarcane. Int J Syst Bact 39:361–364

    Article  Google Scholar 

  23. Gómez-Manzo S, Contreras-Zentella ML, González-Valdez A, Sosa-Torres M, Arreguín-Espinoza R, Escamilla Marván E (2008) The PQQ-alcohol dehydrogenase of Gluconacetobacter diazotrophicus. Int J Food Microbiol 125:71–78

    Article  Google Scholar 

  24. Gómez-Manzo S, Solano-Peralta A, Saucedo-Vázquez JP, Escamilla-Marván JE, Kroneck PMH, Sosa-Torres ME (2010) The membrane-bound quinohemoprotein alcohol dehydrogenase from Gluconacetobacter diazotrophicus PAL5 carries a [2Fe-2S] cluster. Biochem 49:2409–2415

    Article  Google Scholar 

  25. Gómez-Manzo S, Chavez-Pacheco JL, Contreras-Zentella M, Sosa-Torres ME, Arreguín-Espinosa R, Perez de la Mora M, Membrillo-Hernández J, Escamilla JE (2010) Molecular and catalytic properties of the aldehyde dehydrogenase of Gluconacetobacter diazotrophicus, a quinoheme protein containing pyrroloquinoline quinone, cytochrome b, and cytochrome c. J Bact 192:5718–5724

    Article  Google Scholar 

  26. Gonzalez B, Martinez S, Chavez JL, Lee S, Castro NA, Dominguez MA, Gomez S, Contreras ML, Kennedy C, Escamilla JE (2006) Respiratory system of Gluconacetobacter diazotrophicus PAL5 Evidence for a cyanide-sensitive cytochrome bb and cyanide-resistant cytochrome ba quinol oxidases. Biochim Biophys Acta 1757:1614–1622

    Article  CAS  Google Scholar 

  27. Goodhew CF, Brown KR, Pettigrew GW (1986) Heme staining in gels, as useful tool in the study of bacterial c-type cytochromes. Biochim Biophys Acta 852:228–294

    Google Scholar 

  28. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Article  CAS  Google Scholar 

  29. Groen BW, van Kleef MAG, Duine JA (1986) Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem J 234:611–615

    CAS  Google Scholar 

  30. Hauge JG (1964) Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group. J Biol Chem 239:3630–3639

    CAS  Google Scholar 

  31. Heuberger EHML, Poolman B (2000) A spectroscopic assay for the analysis of carbohydrate transport reactions. Eur J Biochem 267:228–234

    Article  CAS  Google Scholar 

  32. Hommes RWJ, Postma PW, Neijssel OM, Tempest DW, Dokter P, Duine JA (1984) Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli. FEMS Microbiol Lett 24:329–333

    Article  CAS  Google Scholar 

  33. Hommes RWJ, van Hell B, Postma PW, Neijssel OM, Tempest DW (1985) The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch Microbiol 143:163–168

    Article  CAS  Google Scholar 

  34. Imanaga Y (1989) Investigations on the active site of glucose dehydrogenase from Pseudomonas fluorescens. In: PQQ and quinoprotein. Springer, Netherlands

  35. von Jagow G, Ljungdahl PO, Graf P, Ohnishi T, Trumpower BL (1984) An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex. J Biol Chem 259:6318–6326

    Google Scholar 

  36. Jiménez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683

    Google Scholar 

  37. Marcinkevičienė L, Bachmatova I, Semėnaitė R, Rudomanskis R, Bražėnas G, Meškiene R, Meškys R (1999) Purification and characterization of PQQ-dependent glucose dehydrogenase from Erwinia sp. Biotechnol Lett 21:187–192

    Article  Google Scholar 

  38. Matshusita K, Ohno Y, Shinagawa E, Adachi O, Ameyama M (1980) Membrane-bound d-glucose dehydrogenase from Pseudomonas sp: solubilization, purification and characterization. Agric Biol Chem 44:1505–1512

    Article  Google Scholar 

  39. Matsushita K, Ameyama M (1982) d-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Meth Enzymol 89:149–154

    Article  CAS  Google Scholar 

  40. Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989) Quinoprotein d-glucose dehydrogenases in Acinetobacter calcoaceticus L.M.D. 79.41: purification and characterization of the membrane-bound enzyme distinct from the soluble enzyme. Antonie Van Leeuwenhoek 56:63–72

    Article  CAS  Google Scholar 

  41. Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989) Reactivity with ubiquinone of quinoprotein d-Glucose Dehydrogenase from Gluconobacter suboxydans. J Biochem 105:633–637

    CAS  Google Scholar 

  42. Matsushita K, Ebisuya H, Ameyama M, Adachi O (1992) Change of the terminal oxidase from cytochrome a 1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J Bact 174:122–129

    CAS  Google Scholar 

  43. Matshusita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microbial Physiol 36:247–301

    Article  Google Scholar 

  44. Matsushita K, Toyama H, Ameyama M, Adachi O, Dewanti A, Duine JA (1995) Soluble and membrane-bound quinoprotein d-glucose dehydrogenases of the Acinetobacter calcoaceticus : the binding process of PQQ to the apoenzymes. Biosci Biotechnol Biochem 59:1548–1555

    Article  CAS  Google Scholar 

  45. Matshusita K, Arents JC, Bader R, Yamada M, Adachi O, Postma PW (1997) Escherichia coli is unable to produce pirroloquinoline quinone (PQQ). Microbiol 143:3149–3156

    Article  Google Scholar 

  46. Meyer M, Schweiger P, Deppenmeier U (2013) Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Appl Microbiol Biotechnol 97:3457–3466

    Article  CAS  Google Scholar 

  47. Neijssel OM, Tempest DW, Postma PW, Duine JA, Frank JZNJ (1983) Glucose metabolism by K+-limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol Lett 20:35–39

    Article  CAS  Google Scholar 

  48. Ng FMW, Dawes EA (1973) Chemostat studies on the regulation on glocose metabolism in Pseudomona aeruginosa by citrate. Biochem J 132:129–137

    CAS  Google Scholar 

  49. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  Google Scholar 

  50. Reis Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat, World. J Microbiol Biotech 10:401–405

    Article  CAS  Google Scholar 

  51. Sode K, Ootera T, Shirahane M, Witarto AB, Igarashi S, Yoshida H (2000) Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement. Enzyme Microb Technol 26:491–496

    Article  CAS  Google Scholar 

  52. Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Dobereiner J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72

    Article  CAS  Google Scholar 

  53. van Schie BJ, Hellingwerf KJ, van Dijken JP, Elfereink MGL, van Dijl JM, Kuenen JG, Konings WN (1985) Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). J Bact 163:493–499

    Google Scholar 

  54. Yamada M, Sumi K, Matsushita K, Adachi O, Yamada J (1993) Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268:12812–12817

    CAS  Google Scholar 

  55. Yamada M, Inbe H, Tanaka M, Sumi K, Matsushita K, Adachi O (1998) Mutant isolation of the Escherichia coli quinoprotein glucose dehydrogenase and analysis of crucial residues Asp-730 and His-775 for its function. J Biol Chem 273:22021–22027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a requisite to obtain the PhD grade in Science; we appreciate to Posgrado en Ciencias Biológicas UNAM, for the academic training of Martín Sará Páez during its doctorate studies. We also appreciate to Dirección General de Estudios de Posgrado (DGEP), for the scholarship granted to MS-P during his studies. SG-M is supported by Consejo Nacional de Ciencia y Tecnología Grant 154570. The technical assistance of Javier Gallegos Infante (IFC/UNAM) for assistance in bibliographic materials is greatly appreciated. This work was started by the Prof. José Edgardo Escamilla in the Instituto de Fisiología Célular, UNAM; but unfortunately deceased, and was concluded by the Dr. Horacio Reyes Vivas from Instituto Nacional de Pediatría. The authors concluded this project that now is published in his honor and memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio Reyes-Vivas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sará-Páez, M., Contreras-Zentella, M., Gómez-Manzo, S. et al. Purification and Characterization of the Membrane-Bound Quinoprotein Glucose Dehydrogenase of Gluconacetobacter diazotrophicus PAL 5. Protein J 34, 48–59 (2015). https://doi.org/10.1007/s10930-014-9596-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9596-4

Keywords

Navigation