Skip to main content
Log in

In Solution Cation-Induced Secondary and Tertiary Structure Alterations of Human Calprotectin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Calprotectin (CP) is widely considered to have diverse roles including growth inhibitory and apoptosis induction in a number of tumor cell lines and antimicrobial activities. As CP has been proposed to bind metal ions with high affinity, we have studied its functional and primarily its structural behavior upon Zn2+ and Mn2+ chelation solely and along with Ca2+. We employed fluorescence spectroscopy and circular dichroism to determine the resulting modifications. Based upon our findings it is clear that treating CP with ions effectively weakened its natural growth inhibitory activity. Moreover, structural analysis of Zn2+ and Mn2+-treated CPs indicated remarkable alterations in the regular secondary structures in favor of irregular structures while Zn2+ and Mn2+ treatment of CP after incubation with Ca2+ displayed no remarkable shifts. Tertiary structure investigation using fluorescence spectroscopy showed that CP undergoes conformational changes upon Zn2+ and Mn2+ treatment whereby Trp residues of protein is slightly exposed to the hydrophilic environment, compactness of CP is compromised, whereas in Ca2+-treated CP, the tertiary structure integrity is intact upon Zn2+ and Mn2+ chelation. Interestingly, CP structural modifications upon Zn2+ and Mn2+ treatment was significantly comparable, probably due to similar radii and charges of ions. Taken all together, we have concluded that CP maintains its normal nature in Ca2+-loaded state when treated with Zn2+ and Mn2+ ions. It can be suggested that Ca2+ not only stabilize CP structure but also helps CP to keep its structure upon metal ions chelation which is involved in host organism defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CP:

Calprotectin

CD:

Circular dichroism

ICP-OES:

Inductively coupled plasma atomic emission spectrometer

Tm:

Melting temperature

ANS:

8-Anilinonaphthalene-1-sulfonic acid

Zn2+ :

Zinc

Ca2+ :

Calcium

Mn2+ :

Manganese

References

  1. Mollinedo F, Borregaard N, Boxer LA (1999) Novel trends in neutrophil structure, function and development. Immunol Today 20(12):535–537. doi:10.1016/S0167-5699(99)01500-5

    Article  CAS  Google Scholar 

  2. Vethanayagam RR, Almyroudis NG, Grimm MJ, Lewandowski DC, Pham CTN, Blackwell TS, Petraitiene R, Petraitis V, Walsh TJ, Urban CF, Segal BH (2011) Role of NADPH oxidase versus neutrophil proteases in antimicrobial host defense. PLoS One 6(12):e28149

    Article  CAS  Google Scholar 

  3. Odink K, Cerletti N, Bruggen J, Clerc RG, Tarcsay L, Zwadlo G, Gerhards G, Schlegel R, Sorg C (1987) Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 330(6143):80–82

    Article  CAS  Google Scholar 

  4. Johne B, Fagerhol MK, Lyberg T, Prydz H, Brandtzaeg P, Naess-Andresen CF, Dale I (1997) Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol Pathol 50(3):113–123

  5. Sohnle PG, Hahn BL, Santhanagopalan V (1996) Inhibition of candida albicans growth by calprotectin in the absence of direct contact with the organisms. J Infect Dis 174(6):1369–1371. doi:10.1093/infdis/174.6.1369

    Article  CAS  Google Scholar 

  6. Yui S, Mikami M, Tsurumaki K, Yamazaki M (1997) Growth-inhibitory and apoptosis-inducing activities of calprotectin derived from inflammatory exudate cells on normal fibroblasts: regulation by metal ions. J Leukoc Biol 61(1):50–57

    CAS  Google Scholar 

  7. Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a bioinformatic approach. Acc Chem Res 42(10):1471–1479. doi:10.1021/ar900015x

    Article  CAS  Google Scholar 

  8. Jakubovics NS, Jenkinson HF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147(7):1709–1718

    Article  CAS  Google Scholar 

  9. Wilder PT, Varney KM, Weiss MB, Gitti RK, Weber DJ (2005) Solution structure of zinc- and calcium-bound rat S100B as determined by nuclear magnetic resonance spectroscopy. Biochemistry 44(15):5690–5702

    Article  CAS  Google Scholar 

  10. Brodersen DE, Nyborg J, Kjeldgaard M (1999) Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 38(6):1695–1704

    Article  CAS  Google Scholar 

  11. Moroz OV, Burkitt W, Wittkowski H, He W, Ianoul A, Novitskaya V, Xie J, Polyakova O, Lednev IK, Shekhtman A (2009) Both Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem 10(1):11

    Article  Google Scholar 

  12. Ostendorp T, Diez J, Heizmann CW, Fritz G (2011) The crystal structures of human S100B in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping. Biochim Biophys Acta (BBA) Mol Cell Res 1813(5):1083–1091

    Article  CAS  Google Scholar 

  13. Kehl-Fie Thomas E, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro Kim A, Chazin Walter J, Skaar Eric P (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10(2):158–164

    Article  CAS  Google Scholar 

  14. Korndörfer IP, Brueckner F, Skerra A (2007) The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J Mol Biol 370(5):887–898. doi:10.1016/j.jmb.2007.04.065

    Article  Google Scholar 

  15. Moroz OV, Blagova EV, Wilkinson AJ, Wilson KS, Bronstein IB (2009) The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. J Mol Biol 391(3):536–551. doi:10.1016/j.jmb.2009.06.004

    Article  CAS  Google Scholar 

  16. Brodersen DE, Nyborg J, Kjeldgaard M (1999) Zinc-binding site of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states. Biochemistry 38(6):1695–1704. doi:10.1021/bi982483d

    Article  CAS  Google Scholar 

  17. Skoog WA, Beck WS (1956) Studies on the fibrinogen, dextran and phytohemagglutinin methods of isolating leukocytes. Blood 11(5):436–454

    CAS  Google Scholar 

  18. Yousefi R, Imani M, Ardestani SK, Saboury AA, Gheibi N, Ranjbar B (2007) Human calprotectin: effect of calcium and zinc on its secondary and tertiary structures, and role of pH in its thermal stability. Acta Biochim Biophys Sin 39(10):795–802. doi:10.1111/j.1745-7270.2007.00343.x

    Article  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  21. Schippers PH, Dekkers HPJM (1981) Direct determination of absolute circular dichroism data and calibration of commercial instruments. Anal Chem 53(6):778–782. doi:10.1021/ac00229a008

    Article  CAS  Google Scholar 

  22. Manavalan P, Johnson WC Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167(1):76–85. doi:10.1016/0003-2697(87)90135-7

    Article  CAS  Google Scholar 

  23. Kelly SMPN (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  Google Scholar 

  24. Kerkhoff C, Klempt M, Sorg C (1998) Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta (BBA) Mol Cell Res 1448(2):200–211. doi:10.1016/S0167-4889(98)00144-X

    Article  CAS  Google Scholar 

  25. Hessian PA, Edgeworth J, Hogg N (1993) MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 53(2):197–204

    CAS  Google Scholar 

  26. Yu WH, Fraser PE (2001) S100β interaction with tau is promoted by zinc and inhibited by hyperphosphorylation in Alzheimer’s disease. J Neurosci 21(7):2240–2246

    CAS  Google Scholar 

  27. Damo SM, Kehl-Fie TE, Sugitani N, Holt ME, Rathi S, Murphy WJ, Zhang Y, Betz C, Hench L, Fritz G, Skaar EP, Chazin WJ (2013) Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proc Natl Acad Sci 110(10):3841–3846. doi:10.1073/pnas.1220341110

    Article  CAS  Google Scholar 

  28. Yui S, Nakatani Y, Mikami M (2003) Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biolog Pharm Bull 26(6):753–760

    Article  CAS  Google Scholar 

  29. Yui S, Nakatani Y, Hunter MJ, Chazin WJ, Yamazaki M (2002) Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity. Med Inflamm 11(3):165–172. doi:10.1080/09622935020138208

    Article  CAS  Google Scholar 

  30. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965. doi:10.1126/science.1152449

    Article  CAS  Google Scholar 

  31. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 405(2):199–221

    Article  CAS  Google Scholar 

  32. Brophy MB, Hayden JA, Nolan EM (2012) Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc 134(43):18089–18100. doi:10.1021/ja307974e

    Article  CAS  Google Scholar 

  33. Hayden JA, Brophy MB, Cunden LS, Nolan EM (2012) High-affinity manganese coordination by human calprotectin is calcium-dependent and requires the histidine-rich site formed at the dimer interface. J Am Chem Soc 135(2):775–787. doi:10.1021/ja3096416

    Article  Google Scholar 

  34. Slupsky CM, Smillie LB, Sykes BD, Reinach FC (1995) Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy. Protein Sci 4(7):1279–1290

    Article  CAS  Google Scholar 

  35. Gagné SM, Tsuda S, Li MX, Chandra M, Smillie LB, Sykes BD (1994) Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci 3(11):1961–1974. doi:10.1002/pro.5560031108

    Article  Google Scholar 

  36. Vogl T, Leukert N, Barczyk K, Strupat K, Roth J (2006) Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim Biophys Acta (BBA) Mol Cell Res 1763(11):1298–1306. doi:10.1016/j.bbamcr.2006.08.028

    Article  CAS  Google Scholar 

  37. Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49(6):451–458. doi:10.1002/(sici)1097-0282(199905)49:6<451:aid-bip3>3.0.co;2-6

    Article  CAS  Google Scholar 

  38. Carvalho SB, Botelho HM, Leal SS, Cardoso I, Fritz G, Gomes CM (2013) Intrinsically disordered and aggregation prone regions underlie β-aggregation in S100 proteins. PLoS One 8(10):e76629

    Article  CAS  Google Scholar 

  39. Kerkhoff C, Vogl T, Nacken W, Sopalla C, Sorg C (1999) Zinc binding reverses the calcium-induced arachidonic acid-binding capacity of the S100A8/A9 protein complex. FEBS Lett 460(1):134–138. doi:10.1016/S0014-5793(99)01322-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to express their deepest gratitude to Dr. Saeed Yadranji Aghdam and Dr. Kourosh Shahpasand for their valuable comments to improve the quality of the paper. We also gratefully acknowledge the support from research council of Urmia University.

Conflict of interest

All the authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Imani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani, M., Bahrami, Y., Jaliani, H.Z. et al. In Solution Cation-Induced Secondary and Tertiary Structure Alterations of Human Calprotectin. Protein J 33, 465–473 (2014). https://doi.org/10.1007/s10930-014-9578-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9578-6

Keywords

Navigation