Skip to main content
Log in

Expression and Biochemical Characterization of a Thermophilic Organic Solvent-Tolerant Lipase from Bacillus sp. DR90

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The objective of the present study was the isolation, molecular cloning and biochemical characterization of a thermophilic organic solvent-resistant lipase from Bacillus sp. DR90. The lipase gene was expressed in Escherichia coli BL21(DE3) using pET-28a(+) vector. The purification of recombinant lipase was conducted by nickel affinity chromatography and its biochemical properties were determined. The lipase sequence with an ORF of 639 bp contains the conserved pentapeptide Ala-His-Ser-Met-Gly. His-tagged recombinant lipase had a specific activity of 1,126 U/mg with a molecular mass of 26.8 kDa. The cloned lipase was optimally active at pH 8.0 and 75 °C representing high stability in broad ranges of temperature and pH. High performance liquid chromatography was used to determine the major compounds released during the lipase-catalyzed reaction of p-nitrophenyl derivatives as well as the substrate specificity. The purified lipase showed high compatibility towards various organic solvents, surfactants and commercial solid/liquid detergents; therefore the recombinant DR90 lipase could be considered as a probable candidate for future applications, predominantly in detergent processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

ILs:

Ionic liquids

LB:

Luria–Bertani

PMSF:

Phenylmethanesulfonyl fluoride

IPTG:

Isopropyl-b-d-thiogalactopyranoside

IMAC:

Immobilized metal ion affinity chromatography

pNPB:

p-Nitrophenyl butyrate

pNPA:

p-Nitrophenyl acetate

pNPP:

p-Nitrophenyl palmitate

pNP:

p-Nitrophenol

PPL:

Porcine pancreatic lipase

ORF:

Open reading frame

SDS-PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

EDTA:

Ethylene diaminetetraacetic acid

DTNB:

55′-Dithiobis-2-nitrobenzoic acid

DTT:

Dithiothreitol

CTAB:

Cetyltrimethylammonium bromide

[EMIm][Br]:

1-Ethyl-3-methylimidazolium bromide

[BMIm][Br]:

1-n-Butyl-3-methylimidazolium bromide

[HMIm][Br]:

1-Hexyl-3-methylimidazoliumbromide

[BMIm][Cl]:

1-Butyl-3-methylimidazolium chloride

References

  1. Guncheva M, Zhiryakova D (2011) Catalytic properties and potential applications of Bacillus lipases. J Mol Catal B Enzym 68:1–21

    Article  CAS  Google Scholar 

  2. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  3. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  4. Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    CAS  Google Scholar 

  5. Hasan F, Ali Shah A, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  6. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  7. Doukyua N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  Google Scholar 

  8. Moniruzzaman M, Nakashima K, Kamiya N, Masahiro G (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    Article  CAS  Google Scholar 

  9. Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6:145–150

    Article  CAS  Google Scholar 

  10. Hasan F, Ali Shah A, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  11. Asoodeh A, Alemi A, Heydari A, Akbari J (2013) Purification and biochemical characterization of an acidophilic amylase from a newly isolated Bacillus sp. DR90. Extremophiles 17:339–348

    Article  CAS  Google Scholar 

  12. Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and predication of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  15. Simpson R (2004) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  16. Cho AR, Yoo SK, Kim EJ (2000) Cloning, sequencing and characterization of thermostable lipase from Bacillus stearothermophilus. FEMS Microbiol Lett 186:235–238

    Article  CAS  Google Scholar 

  17. Ebrahimpour A, Rahman RNZRA, Basri M, Salleh AB (2011) High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM. Bioresour Technol 102:6972–6981

    Article  CAS  Google Scholar 

  18. Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S (2011) A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis 10:221–228

    Article  CAS  Google Scholar 

  19. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol 63:515–547

    Article  Google Scholar 

  20. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  21. Wang CS, Hartsuck JA (1993) A bile salt-activated lipase. A multiple function lipolytic enzyme. Biochem Biophys Acta 1166:1–19

    Article  CAS  Google Scholar 

  22. Dartois V, Baulard A, Schanck K, Colson C (1992) Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta 1131:253–260

    Article  CAS  Google Scholar 

  23. Laane C, Boeren S, Vos K, Veeger C (1987) Rules of optimization of biocatalysis inorganic solvent. Biotechnol Bioeng 3:81–87

    Article  Google Scholar 

  24. Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotech 13:565–571

    Article  CAS  Google Scholar 

  25. Ruiz C, Blanco A, Javier Pastor FI, Diaz P (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol Lett 217:263–267

    Article  CAS  Google Scholar 

  26. Shi B, Wu W, Wen J, Shi Q, Wu S (2010) Cloning and expression of a lipase gene from Bacillus Subtilis FS1403 in Escherichia coli. Ann Microbiol 60:399–404

    Article  CAS  Google Scholar 

  27. Sabri S, Rahman RNZRA, Chor Leow T, Basri M, Salleh AB (2009) Secretory expression and characterization of a highly Ca2+-activated thermostable L2 lipase. Protein Expr Puri 68:161–166

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang F, Li Z (2009) Gene analysis, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa. World J Microbiol Biotechnol 25:1267–1274

    Article  CAS  Google Scholar 

  29. Riaz M, Ali Shah A, Hameed A, Hasan F (2010) Characterization of lipase produced by Bacillus sp. FH5in immobilized and free state. Ann Microbiol 60:169–175

    Article  CAS  Google Scholar 

  30. Shariff FM, Rahman RNZRA, Basri M, Salleh AB (2011) A newly isolated thermostable lipase from Bacillus sp. Int J Mol Sci 12:2917–2934

    Article  CAS  Google Scholar 

  31. Ventura SPM, Santos LDF, Saraiva JA, Coutinho JAP (2012) Concentration effect of hydrophilic ionic liquids on the enzymatic activity of Candida antarctica lipase B. World J Microbiol Biotechnol 28:2303–2310

    Article  CAS  Google Scholar 

  32. Mukherjeea AK, Borahb M, Rai SK (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations. Biochem Eng J 43:149–156

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Grant number 91058286 from Iran National Science Foundation (INSF) and is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Asoodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asoodeh, A., Emtenani, S. & Emtenani, S. Expression and Biochemical Characterization of a Thermophilic Organic Solvent-Tolerant Lipase from Bacillus sp. DR90. Protein J 33, 410–421 (2014). https://doi.org/10.1007/s10930-014-9574-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9574-x

Keywords

Navigation