Skip to main content
Log in

Molecular Dynamics Simulations and Principal Component Analysis on Human Laforin Mutation W32G and W32G/K87A

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Mutations in human laforin lead to an autosomal neurodegenerative disorder Lafora disease. In N-terminal carbohydrate binding domain of laforin, two mutations W32G and K87A are reported as highly disease causing laforin mutants. Experimental studies reported that mutations are responsible for the abolishment of glycogen binding which is a critical function of laforin. Our current computational study focused on the role of conformational changes in human laforin structure due to existing single mutation W32G and prepared double mutation W32G/K87A related to loss of glycogen binding. We performed 10 ns molecular dynamics (MD) simulation studies in the Gromacs package for both mutations and analyzed the trajectories. From the results, the global properties like root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area and hydrogen bonds showed structural changes in atomic level observed in W32G and W32G/K87A laforin mutants. The conformational change induced by mutants influenced the loss of the overall stability of the native laforin. Moreover, the change in overall motion of protein was analyzed by principal component analysis and results showed protein clusters expanded more than native and also change in direction in case of double mutant in conformational space. Overall, our report provides theoretical information on loss of structure–function relationship due to flexible nature of laforin mutants. In conclusion, comparative MD simulation studies support the experimental data on W32G and W32G/K87A related to the lafora disease mechanism on glycogen binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

RMSD:

Root mean square deviation

RMSF:

Root means square fluctuation

Rg:

Radius of gyration

SASA:

Solvent accessible surface area

PCA:

Principal component analysis

References

  1. Minassian BA, Lee JR, Herbrick JA, Huizenga J, Soder S, Mungall AJ, Dunham I, Gardner R, Fong CY, Carpenter S, Jardim L, Satishchandra P, Andermann E, Snead OC III, Lopes-Cendes I, Tsui LC, Delgado-Escueta AV, Rouleau GA, Scherer SW (1998) Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 20:171–174

    Article  CAS  Google Scholar 

  2. Tagliabracci VS, Julie T, Wei W, Jean-Marie G, Xiaochu Z, Skurat AV, Delgado-Escueta AV, Minassian BA, DePaoli-Roach AA, Roach PJ (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. PNAS 104(49):19262–19266

    Article  CAS  Google Scholar 

  3. Minassian BA (2002) Progressive myoclonus epilepsy with polyglucosan bodies: lafora disease. Adv Neurol 89:199–210

    Google Scholar 

  4. Sakai M, Austin J, Witmer F, Trueb L (1970) Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20:160–176

    Article  CAS  Google Scholar 

  5. Baykal B (2008) Progresif miyoklonik hastal›klar- Lafora hastal. Epilepsi 14:17–51

    Google Scholar 

  6. Lafora GR (1911) Uber des Vorkommen amyloider KJrperchen im innern der Ganglienzellen. Pathol Anat 205:295–303

    Article  CAS  Google Scholar 

  7. Striano P, Zara F, Turnbull J, Girard JM, Ackerley CA, Cervasio M, Rosa GD, Basso-De Caro MLD, Striano S, Minassian BA (2008) Typical progression of myoclonic epilepsy of the Lafora type: a case report. Nat Clin Pract Neurol 4:106–111

    Article  Google Scholar 

  8. Gambetti P, Di Mauro S, Hirt L, Blume RP (1971) Myoclonic epilepsy with Lafora bodies. Arch Neurol 25:483–493

    Article  CAS  Google Scholar 

  9. Gentry MS, Dixon JE, Worby CA (2009) Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci 34:628–639

    Article  CAS  Google Scholar 

  10. Ganesh S, Agarwala KL, Ueda K, Akagi T, Shoda K, Usui T, Hashikawa T, Osada H, Delgado-Escueta AV, Yamakawa K (2000) Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum Mol Genet 9:2251–2261

    Article  CAS  Google Scholar 

  11. Gentry MS, Dowen RH, Worby CA, Mattoo S, Ecker JR, Dixon JE (2007) The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. J Cell Biol 178(3):477–488

    Article  CAS  Google Scholar 

  12. Ianzano L, Zhang J, Chan EM, Zhao XC, Lohi H, Scherer SW, Minassian BA (2005) Lafora progressive myoclonus epilepsy mutation database-EPM2A and NHLRC1 (EPM2B) genes. Hum Mutat 26(4):397

    Article  Google Scholar 

  13. Gomez-Garre P, Sanz Y, Rodrıguez de Cordoba S, Serratosa JM (2000) Mutational spectrum of the EPM2A gene in progressive myoclonus epilepsy of Lafora: high degree of allelic heterogeneity and prevalence of deletions. Eur J Hum Genet 8:946–954

    Article  CAS  Google Scholar 

  14. Wang J, Stuckey JA, Wishart MJ, Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem 27:2377–2380

    Article  Google Scholar 

  15. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  16. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  17. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  18. Berendsen HJC, Grigera JR, Straatsma TP (1997) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  19. Cheatham TEIII, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 14:4193–4194

    Article  Google Scholar 

  20. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1996) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  Google Scholar 

  21. Miyamoto S, Kollman PA (1992) SETTLE an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  22. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 8:3684–3690

    Article  Google Scholar 

  23. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rohini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikumar, P.S., Rohini, K. & Rajesh, P.K. Molecular Dynamics Simulations and Principal Component Analysis on Human Laforin Mutation W32G and W32G/K87A. Protein J 33, 289–295 (2014). https://doi.org/10.1007/s10930-014-9561-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9561-2

Keywords

Navigation