Skip to main content
Log in

First Thermostable Endo-β-1,4-Glucanase from Newly Isolated Xanthomonas sp. EC102

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A novel gene encoding thermostable endoglucanase was identified in Xanthomonas sp. EC102 from soil. The gene had 1,458 base pairs of open reading frame, which encode a 52-kDa protein of 486 amino acid residues. Sequence of the amino acid residues was similar with the endoglucanase from Xanthomonas campestris pv. campestris ATCC33913 (GenBank Accession No. NP_638867.1) (94 % identity). The endoglucanase was overexpressed in Escherichia coli BL21 and purified. Temperature for the highest enzymatic activity was 70 °C and pH optima was pH 5.5. The specific activity of the endoglucanase toward carboxymethylcellulose (CMC) was approximately 2 μmol min−1 mg−1, V max for CMC was 1.44 μmol mg−1 min−1, and K m values was 25.6 mg mL−1. The EC102 endoglucanase was stable at temperatures up to 60 °C, and it was activated by 0.1 mM of Mn2+ and Co2+. This is the first report about thermostable endoglucanase from Xanthomonas sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMC:

Carboxymethylcellulose

GH 5:

Glycosyl hydrolase family 5

CBM2:

Carbohydrate-binding module 2

References

  1. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Expinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  2. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  4. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  Google Scholar 

  5. Dubnau D, Davidoff-Abelson R (1971) Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor recipient complex. J Mol Bio 56:209–221

    Article  CAS  Google Scholar 

  6. Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity. J Biol Chem 270:26012–26019

    Article  CAS  Google Scholar 

  7. Han SO, Cho HY, Yukawa H, Inui M (2004) Doi RH regulation of expression of cellulosomes and noncellulosomal (hemi)celluloytic enzymes in Clostridium cellulovorans during growth on different carbon sources. J Bacteriol 186:4218–4227

    Article  CAS  Google Scholar 

  8. Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10:395–402

    Article  CAS  Google Scholar 

  9. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotech 130:114–123

    Article  CAS  Google Scholar 

  10. Hu J, Qian W, He C (2007) The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice. FEMS Microbiol Lett 269:273–279

    Article  CAS  Google Scholar 

  11. Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611–612

    Article  CAS  Google Scholar 

  12. Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101:7882–7888

    Article  CAS  Google Scholar 

  13. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201

    Article  CAS  Google Scholar 

  14. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Pretorius, Pretorius, microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  15. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  Google Scholar 

  16. Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1:127–132

    Article  CAS  Google Scholar 

  17. Mingardon F, Bagert JD, Maisonnier C, Trudeau DL, Arnold FH (2010) Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl Environ Microbiol 77:1436–1442

    Article  Google Scholar 

  18. Paula SP, Alexandra M, Jose CD, Barrros MRA, Maria CF (2002) Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme Microb Technol 30:924–933

    Article  Google Scholar 

  19. Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous acidothermus cellulolyticus 1,4-beta-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 137–140:207–219

    Google Scholar 

  20. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806

    Article  CAS  Google Scholar 

  21. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  22. Yang D, Weng H, Wang M, Xu W, Li Y, Yang H (2010) Cloning and expression of a novel thermostable cellulase from newly isolated Bacillus subtilis strain I15. Mol Biol Rep 37:1923–1929

    Article  CAS  Google Scholar 

  23. Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  24. Zou W, Liu C, Gao D, Wang Z (1994) Cloning and expression of beta-glucosidase gene in Xanthomonas campestris XA5-5. Wei Sheng Wu Xue Bao 34:271–278

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the KRIBB Initiative Program and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (Grant Number RBM4381313).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joong-Su Kim or Namhyun Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, MH., Chang, YH., Lee, HS. et al. First Thermostable Endo-β-1,4-Glucanase from Newly Isolated Xanthomonas sp. EC102. Protein J 33, 110–117 (2014). https://doi.org/10.1007/s10930-013-9535-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9535-9

Keywords

Navigation