Skip to main content
Log in

Phenoloxidase Activity of Helix aspersa Maxima (Garden Snail, Gastropod) Hemocyanin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The oxygen-transporting protein, hemocyanin (Hc), of the garden snail Helix aspersa maxima (HaH) was isolated and kinetically characterized. Kinetic parameters of the reaction of catalytic oxidation of catechol to quinone, catalyzed by native HaH were determined: the V max value amounted to 22 nmol min−1 mg−1, k cat to 1.1 min−1. Data were compared to those reported for other molluscan Hcs and phenoloxidases (POs). The o-diphenoloxidase activity of the native HaH is about five times higher than the activity determined for the Hcs of the terrestrial snail Helix pomatia and of the marine snail Rapana thomasiana (k cat values of 0.22 and 0.25 min−1, respectively). The K m values obtained for molluscan Hcs from different species are comparable to those for true POs, but the low catalytic efficiency of Hcs is probably related to inaccessibility of the active sites to potential substrates. Upon treatment of HaH with subtilisin DY, the enzyme activity against substrate catechol was considerably increased. The relatively high proteolytically induced o-diPO activity of HaH allowed using it for preparation of a biosensor for detection of catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DMF:

N,N-dimethylformamide

l-Dopa:

3,4-Dihydroxy-l-phenyl-alanine

EDTA:

Ethylenediaminetetraacetic acid

MBTH:

3-Methyl-2-benzothiazolinone hydrazone

PAGE:

Polyacrylamide gel electrophoresis

PMSF:

Phenylmethanesulfonyl fluoride

SDS:

Sodium dodecyl sulphate

Tris–HCl:

Tris (hydroxymethyl) amino-methane hydrochloride

References

  1. Abdullah J, Ahmad M, Karuppiah N, Heng LY, Sidek H (2006) Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sens Actuators B: Chem 114:604–609

    Article  CAS  Google Scholar 

  2. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 7:2238–2250

    Article  CAS  Google Scholar 

  3. Campello S, Beltramini M, Giordano G, Di Muro P, Marino SM, Bubacco L (2008) Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin. Arch Biochem Biophys 471:159–167

    Article  CAS  Google Scholar 

  4. Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25:392–397

    Article  CAS  Google Scholar 

  5. Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 28:673–687

    Article  CAS  Google Scholar 

  6. Dykstra P, Hao J, Koev ST, Payne GF, Yu L, Ghodssi R (2009) An optical MEMS sensor utilizing a chitosan film for catechol detection. Sens Actuators B: Chem 138:64–70

    Article  CAS  Google Scholar 

  7. Eicken C, Zippel F, BuEldt-Karentzopoulos K, Krebs B (1998) Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type 3 dicopper center. FEBS Lett 436:293–299

    Article  CAS  Google Scholar 

  8. Espin JC, Morales M, Varon R, Tudela J, Garcia-Canovas F (1995) A continuous spectrophotometric methods for determining monophenolase and diphenolase activities of apple polyphenol oxidase. Anal Biochem 231:237–246

    Article  CAS  Google Scholar 

  9. Gielens C, Verschueren LJ, Preaux G, Lontie R (1981) Gel chromatographic separation of the hemocyanins of Helix pomatia. Further electrophoretic and immunological characterization of the components. Comp Biochem Physiol 69B:455–462

    CAS  Google Scholar 

  10. Gielens C, De Sadeleer J, Preaux G, Lontie R (1987) Identification, separation and characterization of the hemocyanin components of Helix aspersa. Comp Biochem Physiol 88B:181–186

    CAS  Google Scholar 

  11. Heirwegh K, Borginon H, Lontie R (1961) Separation and absorption spectra of α- and β-hemocyanin of Helix pomatia. Biochim Biophys Acta 48:517–526

    Article  CAS  Google Scholar 

  12. Hristova R, Dolashki A, Voelter W, Stefanovic S, Dolashka-Angelova P (2008) o-Diphenol oxidase activity of molluscan hemocyanins. Comp Biochem Physiol 149B:439–446

    Article  CAS  Google Scholar 

  13. Idakieva K, Siddiqui NI, Parvanova K, Nikolov P, Gielens C (2006) Fluorescence properties and conformational stability of the β-hemocyanin of Helix pomatia. Biochim Biophys Acta 1764:807–814

    Article  CAS  Google Scholar 

  14. Idakieva K, Nikolov P, Chakarska I, Shnyrov VL, Genov N (2008) Spectroscopic properties and conformational stability of Concholepas concholepas hemocyanin. J Fluoresc 18:715–725

    Article  CAS  Google Scholar 

  15. Idakieva K, Siddiqui NI, Meersman F, De Maeyer M, Chakarska I, Gielens C (2009) Influence of limited proteolysis, detergent treatment and lyophilization on the phenoloxidase activity of Rapana thomasiana hemocyanin. Int J Biol Macromol 45:181–187

    Article  CAS  Google Scholar 

  16. Jung CT, Wickett RR, Desai PL, Bronaugh RL (2003) In vitro and in vivo percutaneous absorption of catechol. Food Chem Toxicol 41:885–895

    Article  CAS  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  18. Lontie R (1983) Components, functional units, and active sites of Helix pomatia hemocyanin. Life Chem Rep Suppl 1:109–120

    CAS  Google Scholar 

  19. Naraoka T, Uchisawa H, Mori H, Matsue H, Chiba S, Kimura A (2003) Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Eur J Biochem 270:4026–4038

    Article  CAS  Google Scholar 

  20. Naresh KN, Krupanidhi S, Rajan SS (2013) Purification, spectroscopic characterization and o-diphenoloxidase activity of hemocyanin from a freshwater gastropod: Pila globosa. Protein J 32:327–336

    Article  CAS  Google Scholar 

  21. Paranjpe P, Dutta S, Karve M, Padhye S, Narayanaswamy R (2001) A disposable optrode using immobilized tyrosinase films. Anal Biochem 294:102–107

    Article  CAS  Google Scholar 

  22. Perbandt M, Guthöhrlein E, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C (2003) The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry 42:6341–6346

    Article  CAS  Google Scholar 

  23. Préaux G, Gielens C (1984) In: Lontie R (ed) Copper proteins and copper enzymes, vol II. CRC Press, Boca Raton

  24. Salvato B, Santamaria M, Beltramini M, Alzuet G, Casella L (1998) The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Biochemistry 37:14065–14077

    Article  CAS  Google Scholar 

  25. Siddiqui NI, Akosung RF, Gielens C (2006) Location of intrinsic and inducible phenoloxidase activity in molluscan hemocyanin. Biochim Biophys Res Commun 348:1138–1144

    Article  CAS  Google Scholar 

  26. Siddiqui NI, Yigzaw Y, Preaux G, Gielens C (2009) Involvement of glycans in the immunological cross-reaction between α-macroglobulin and hemocyanin of the gastropod Helix pomatia. Biochimie 91:508–516

    Article  CAS  Google Scholar 

  27. Solomon EI, Tuczek F, Root D, Brown C (1994) Spectroscopy of binuclear dioxygen complexes. Chem Rev 94:827–856

    Article  CAS  Google Scholar 

  28. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  CAS  Google Scholar 

  29. Starek A (2003) Estrogens and organochlorine xenoestrogens and breast cancer risk. IJOMEH 16:113–124

    Google Scholar 

  30. Suzuki K, Shimokawa C, Morioka C, Itoh S (2008) Monooxygenase activity of Octopus vulgaris hemocyanin. Biochemistry 47:7108–7115

    Article  CAS  Google Scholar 

  31. van Holde K, Miller K, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    Article  Google Scholar 

  32. Velkova L, Dimitrov I, Schwarz H, Stefanovic S, Voelter W, Salvato B, Dolashka-Angelova P (2010) Structure of hemocyanin from garden snail Helix lucorum. Comp Biochem Physiol B 157:16–26

    Article  Google Scholar 

  33. Wang G, Xu JJ, Ye LH, Zhu JJ, Chen HY (2002) Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry 57:33–38

    Article  CAS  Google Scholar 

  34. Wang S, Tan Y, Zhao D, Liu G (2008) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan. Biosens Bioelectron 23:1781–1787

    Article  CAS  Google Scholar 

  35. Wang B, Zheng J, He Y, Sheng Q (2013) A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline nanocomposites. Sens Actuators B: Chem 186:417–422

    Article  CAS  Google Scholar 

  36. Yang D-P, Ji H-F, Tang G-Y, Ren W, Zhang H-Y (2007) How many drugs are catecholics. Molecules 12:878–884

    Article  CAS  Google Scholar 

  37. Yang L, Xiong H, Zhang X, Wang S (2012) A novel tyrosinase biosensor based on chitosan-carbon-coated nickel nanocomposite film. Bioelectrochemistry 84:44–48

    Article  CAS  Google Scholar 

  38. Yinges Y, Gielens C, Preaux G (2001) Isolation and characterization of an α-macroglobulin from the gastropod mollusc Helix pomatia with tetrameric structure and preserved activity after methylamine treatment. Biochim Biophys Acta 1545:104–113

    Article  Google Scholar 

  39. Zhang J, Lei J, Liu Y, Zhao J, Ju H (2009) Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite. Biosens Bioelectron 24:1858–1863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria, for the financial support of a research Grant DTK 02/78.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimira Nikolova Idakieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raynova, Y., Doumanova, L. & Idakieva, K.N. Phenoloxidase Activity of Helix aspersa Maxima (Garden Snail, Gastropod) Hemocyanin. Protein J 32, 609–618 (2013). https://doi.org/10.1007/s10930-013-9523-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9523-0

Keywords

Navigation