Skip to main content

Advertisement

Log in

Two Global Conformation States of a Novel NAD(P) Reductase Like Protein of the Thermogenic Appendix of the Sauromatum guttatum Inflorescence

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A novel NAD(P) reductase like protein (RL) belonging to a class of reductases involved in phenylpropanoid synthesis was previously purified to homogeneity from the Sauromatum guttatum appendix. The Sauromatum appendix raises its temperature above ambient temperature to ~30 °C on the day of inflorescence opening (D-day). Changes in the charge state distribution of the protein in electrospray ionization–mass spectrometry spectra were observed during the development of the appendix. RL adopted two conformations, state A (an extended state) that appeared before heat-production (D − 4 to D − 2), and state B (a compact state) that began appearing on D − 1 and reached a maximum on D-day. RL in healthy leaves of Arabidopsis is present in state A, whereas in thermogenic sporophylls of male cones of Encephalartos ferox is present in state B. These conformational changes strongly suggest an involvement of RL in heat-production. The biophysical properties of this protein are remarkable. It is self-assembled in aqueous solutions into micrometer sizes of organized morphologies. The assembly produces a broad range of cyclic and linear morphologies that resemble micelles, rods, lamellar micelles, as well as vesicles. The assemblies could also form network structures. RL molecules entangle with each other and formed branched, interconnected networks. These unusual assemblies suggest that RL is an oligomer, and its oligomerization can provide additional information needed for thermoregulation. We hypothesize that state A controls the plant basal temperature and state B allows a shift in the temperature set point to above ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

BSA:

Bovine serum albumin

CSD:

Charge state distribution

D-day:

The day of inflorescence opening and heat-production

ESI–MS:

Electrospray ionization–mass spectrometry

GuHCl:

Guanidine hydrochloride

IP:

Isopropanol

MaxEnt:

Maximum entropy software for deconvolution of multiple charged electrospray envelopes

PVP:

Polyvinylpyrrolidone

RL:

NAD(P) reductase-like protein

RP-HPLC:

Reversed phase-high performance liquid chromatography

SA:

Salicylic acid

TFA:

Trifluoroacetic acid

References

  1. Ayala G, Nascimento A, Gómez-Puyou A, Darszon A (1985) Biochim Biophys Acta 810:115–122

    Article  CAS  Google Scholar 

  2. Banerjee S, Mazumdar S (2012) Int J Anal Chem 2012:282574

  3. Baum J, Dobson CM, Evans PA, Hanley C (1989) Biochemistry 28:7–13

    Article  CAS  Google Scholar 

  4. Bryan PN, Orban J (2010) Curr Opin Struct Biol 20:482–488

    Article  CAS  Google Scholar 

  5. Carrell RW, Lomas DA (1997) Lancet 350:134–138

    Article  CAS  Google Scholar 

  6. Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Science 309:2057–2060

    Article  CAS  Google Scholar 

  7. Darszon A, Gómez-Puyou A (1982) Eur J Biochem 12:427–433

    Article  Google Scholar 

  8. Dobo A, Kaltashov IA (2001) Anal Chem 73:4763–4773

    Article  CAS  Google Scholar 

  9. Eichner T, Kalverda AP, Thompson GS, Homans SW, Radford SE (2010) Mol Cell 41:161–172

    Article  Google Scholar 

  10. Fitzpatrick AW, Knowles TPJ, Waudby CA, Vendruscolo M, Dobson CM (2011) PLoS Comp Biol 7:e1002169

    Article  CAS  Google Scholar 

  11. Ha J-H, Loh SN (2012) Chem Eur J 18:7984–7999

    Article  CAS  Google Scholar 

  12. Hammel HT, Jackson DC, Stolwijk JAJ, Hardy HD, Strømme SR (1963) J Appl Physiol 18:1146–1154

    CAS  Google Scholar 

  13. Harrison AG (1997) Mass Spectrom Rev 16:201–217

    Article  CAS  Google Scholar 

  14. Ito K, Ito T, Onda Y, Uemura M (2004) Plant Cell Physiol 45:257–264

    Article  CAS  Google Scholar 

  15. Jurchen JC, Garcia DE, Williams ER (2004) J Am Soc Mass Spec 15:1408–1415

    Article  CAS  Google Scholar 

  16. Jahn TR, Radford SE (2008) Arch Biochem Biophys 469:100–117

    Article  CAS  Google Scholar 

  17. Lamb HK, Leslie K, Dodds AL, Nutley M, Cooper A, Johnson C, Thompson P, Stammers DK, Hawkins AR (2003) J Biol Chem 278:32107–32114

    Article  CAS  Google Scholar 

  18. Lamb HK, Stammers DK, Hawkins AR (2008) Sci Signal 133:pe38

    Article  Google Scholar 

  19. Linding R, Schymkowitz J, Rousseau F, Diella F, Serrano L (2004) J Mol Biol 342:345–353

    Article  CAS  Google Scholar 

  20. Luo X, Tang Z, Xia G, Wassmann K, Matsumoto T, Rizo J, Yu H (2004) Nat Struct Mol Biol 11:338–345

    Article  CAS  Google Scholar 

  21. Marianayagam NJ, Sunde M, Matthews JM (2004) Trends Biochem Sci 29:618–625

    Article  CAS  Google Scholar 

  22. Meeuse BJD (1985) Physiological and biochemical aspects of thermogenic respiration in the aroid appendix. In: Palmer JM (ed) The physiology and biochemistry of plant respiration. Cambridge University Press, Cambridge, pp 47–58

  23. Miranker A, Robinson CV, Radford SE, Aplin RT, Dobson CM (1993) Science 262:896–900

    Article  CAS  Google Scholar 

  24. Morozova LA, Haynie DT, Arico-Muendel C, Van Dael H, Dobson CM (1995) Nat Struct Biol 2:871–875

    Article  CAS  Google Scholar 

  25. Namba K (2001) Genes Cells 6:1–12

    Article  CAS  Google Scholar 

  26. Núñez-Corcuera B, Serafimidis J, Arias-Palomo E, Rivera-Calzada A, Suarez T (2008) Dev Biol 321:331–342

    Article  Google Scholar 

  27. Philo JS, Arakawa T (2009) Curr Pharm Biotech 10:348–351

    Article  CAS  Google Scholar 

  28. Rackovsky S (2011) Phys Rev Lett 106:248101–248105

    Article  CAS  Google Scholar 

  29. Ramanathan A, Savol AJ, Langmead CJ, Agarwal PK, Chennubhotla CS (2011) PLoS One 6:e15827

    Article  CAS  Google Scholar 

  30. Raskin I, Turner IM, Melander WR (1989) Proc Natl Acad Sci USA 86:2214–2218

    Article  CAS  Google Scholar 

  31. Saitou K (1999) IEEF Trans Rob 15:510–520

    Article  Google Scholar 

  32. Shoemaker BA, Portman JJ, Wolynes PG (2000) Proc Natl Acad Sci USA 97:8868–8873

    Article  CAS  Google Scholar 

  33. Sigalov AB, Zhuravleva AV, Orekhov VY (2007) Biochimie 89:419–421

    Article  CAS  Google Scholar 

  34. Singh GP, Ganapathi M, Dash D (2007) Proteins 66:761–765

    Article  CAS  Google Scholar 

  35. Skubatz H, Meeuse BJD, Bendich AJ (1989) Plant Physiol 91:530–535

    Article  CAS  Google Scholar 

  36. Skubatz H, Nelson TA, Meeuse BJD, Bendich AJ (1991) Plant Physiol 95:1084–1088

    Article  CAS  Google Scholar 

  37. Skubatz H, Tang W, Meeuse BJD (1993) J Exp Bot 44:489–492

    Article  Google Scholar 

  38. Skubatz H, Meeuse BJD (1993) J Exp Bot 44:493–499

    Article  Google Scholar 

  39. Skubatz H, Kunkel DD, Meeuse BJD (1993) Sex Plant Reprod 6:53–170

    Google Scholar 

  40. Skubatz H, Kunkel DD, Patt J, Howald WN, Rothman T, Meeuse BJD (1995) Proc Natl Acad Sci USA 92:10084–10088

    Article  CAS  Google Scholar 

  41. Skubatz H, Howald WN (2013) Protein J 32:197–207

    Article  CAS  Google Scholar 

  42. Sohl JL, Jaswal SS, Agard DA (1998) Nature 395:817–819

    Article  CAS  Google Scholar 

  43. States DJ, Creighton TE, Dobson CM, Karplus M (1987) J Mol Biol 195:731–739

    Article  CAS  Google Scholar 

  44. Sugase K, Dyson HJ, Wright PE (2007) Nature 447:1021–1025

    Article  CAS  Google Scholar 

  45. Tang W (1987) Bot Gazette 148:165–174

    Article  Google Scholar 

  46. Tompa P (2002) Trends Biochem Sci 27:527–533

    Article  CAS  Google Scholar 

  47. Tompa P (2005) FEBS Lett 579:3346–3354

    Article  CAS  Google Scholar 

  48. Tompa P, Szasz C, Buday L (2005) Trends Biochem Sci 30:484–489

    Article  CAS  Google Scholar 

  49. Tompa P, Fuxreiter M (2008) Trends Biochem Sci 33:2–8

    Article  CAS  Google Scholar 

  50. Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Protein Sci 8:1181–1603

    Article  CAS  Google Scholar 

  51. Tuinstra RL, Peterson FC, Kutlesa S, Elgin ES, Kron MA, Volkman BF (2008) Proc Natl Acad Sci USA 105:5057–5062

    Article  CAS  Google Scholar 

  52. Udgaonkar JB (2008) Annu Rev Biophys 37:489–510

    Article  CAS  Google Scholar 

  53. Uversky VN (2002) Protein Sci 11:739–756

    Article  CAS  Google Scholar 

  54. Wanasundara SN, Thachuk M (2007) J Am Soc Mass Spec 18:2242–2253

    Article  CAS  Google Scholar 

  55. Wang L, Maji SK, Sawaya MR, Eisenberg D (2010) Curr Opin Struct Biol 20:482–488

    Article  Google Scholar 

  56. Wolynes PG, Onuchic JN (1995) Science 267:1619–1620

    Article  CAS  Google Scholar 

  57. Yeates TO, Padilla JE (2002) Curr Opin Struct Biol 12:464–470

    Article  CAS  Google Scholar 

  58. Zwanzig R (1997) Proc Natl Acad Sci USA 94:148–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Skubatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubatz, H., Howald, W.N. Two Global Conformation States of a Novel NAD(P) Reductase Like Protein of the Thermogenic Appendix of the Sauromatum guttatum Inflorescence. Protein J 32, 399–410 (2013). https://doi.org/10.1007/s10930-013-9497-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9497-y

Keywords

Navigation