Skip to main content
Log in

Fluorescence Studies on the Stability, Flexibility and Substrate-Induced Conformational Changes of Acetate Kinases from Psychrophilic and Mesophilic Bacteria

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The acetate kinase from the Antarctic psychrophilic Shewanella sp. AS-11 (SAK) has a significantly higher catalytic efficiency at low temperatures when compared with that from mesophilic Escherichia coli K-12 (EAK). To examine the stability and conformational flexibility of SAK and EAK, steady state intrinsic fluorescence studies were performed. EAK contains only one Trp at a position 46, while SAK contains two Trps at positions 46 and 388. From the fluorescence emission spectra, quenching with acrylamide, Cs+ and I at different temperatures and denaturation with guanidine-HCl, it was revealed that the SAK bears more flexible and unstable structure than that of EAK. Substrate-induced conformational changes reflect that SAK reached transition state through more conformational changes than EAK. In combination of our thermodynamic studies on the enzymatic reaction and present research findings, it can be concluded that these structural features of SAK may contribute to its high catalytic efficiency at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASKHA:

Acetate and sugarkinases/Hsc70/actin

EAK:

Acetate kinase from Escherichia coli K-12

SAK:

Acetate kinase from Shewanella species AS-11

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

GdmCl:

Guanidine-HCl

Trp:

Tryptophan

References

  1. Aleshin AE, Zeng C, Bourenkov GP, Bartunik HD, Fromm HJ, Honzatko RB (1998) Structure 6:39–50

    Article  CAS  Google Scholar 

  2. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Buss KA, Cooper DR, Ingram-Smith C, Ferry JG, Sanders DA, Hasson MS (2001) J Bacteriol 183:680–686

    Article  CAS  Google Scholar 

  4. Bystrom CE, Pettigrew DW, Branchaud BP, O’Brien P, Remington SJ (1999) Biochemistry 38:3508–3518

    Article  CAS  Google Scholar 

  5. Calhoun DB, Englander SW, Wright WW, Vanderkooi JM (1988) Biochemistry 27:8466–8474

    Article  CAS  Google Scholar 

  6. Chen Y, Barkely MD (1998) Biochemistry 37:9976–9982

    Article  CAS  Google Scholar 

  7. Chiuri R, Maiorano G, Rizzello A, Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Biophys J 96:1586–1596

    Article  CAS  Google Scholar 

  8. Collins T, Meuwis MA, Gerday C, Feller G (2003) J Mol Biol 328:419–428

    Article  CAS  Google Scholar 

  9. D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Phil Trans R Soc 357:917–925

    Article  Google Scholar 

  10. D’Amico S, Marx JC, Gerday C, Feller G (2003) J Biol Chem 278:7891–7896

    Article  Google Scholar 

  11. Diao J, Ma YD, Hasson MS (2009) Proteins 1–12. doi:10.1002/Prot.22610

  12. Feller G (2003) Cell Mol Life Sci 60:648–662

    Article  CAS  Google Scholar 

  13. Ferry JG (1992) J Bacteriol 174:5489–5495

    CAS  Google Scholar 

  14. Fields PA (2001) Comp Biochem Physiol 129:417–431

    Article  CAS  Google Scholar 

  15. Fox DK, Roseman S (1986) J Biol Chem 261:13487–13497

    CAS  Google Scholar 

  16. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) J Biol Chem 278:37015–37023

    Article  CAS  Google Scholar 

  17. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Trends Biotechnol 18(3):103–107

    Article  CAS  Google Scholar 

  18. Gorrell A, Lawrence SH, Ferry JG (2005) J Biol Chem 280:10731–10742

    Article  CAS  Google Scholar 

  19. Hsu C, Chen C, Jou M, Lee AY, Lin Y, Yu Y, Huang WWuS (2005) Nucleic Acids Res 33:4053–4064

    Article  CAS  Google Scholar 

  20. Ingram-Smith C, Gorrel A, Lawrence SH, Iyer P, Smith K, Ferry JG (2005) J Bacteriol 187:2386–2394

    Article  CAS  Google Scholar 

  21. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Singapore

    Book  Google Scholar 

  22. Latimer MT, Ferry JG (1993) J Bacteriol 175:6822–6829

    CAS  Google Scholar 

  23. Lonhienne T, Gerday C, Feller G (2000) Biochim Biophys Acta 1543:1–10

    Article  CAS  Google Scholar 

  24. Matveeva EG, Morisseau C, Goodrow MH, Mullin C, Hammock BD (2009) Curr Pharm Biotechnol 10:589–599

    Article  CAS  Google Scholar 

  25. Morita RY (1975) Bacteriol Rev 39:144–167

    CAS  Google Scholar 

  26. Pace CN (1986) Enzymology 131:266–280

    Article  CAS  Google Scholar 

  27. Paul DWE, Sharom FJ (2008) J Biol Chem 283:12840–12850

    Article  Google Scholar 

  28. Roohi KM, Ahmad IZ, Arif JM (2011) Asian J Biotechnol 3:449–459

    Article  CAS  Google Scholar 

  29. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  30. Svingor A, Kardos J, Hajdú I, Németh A, Závodszky P (2001) J Biol Chem 276:28121–28125

    Article  CAS  Google Scholar 

  31. Tang MAK, Motoshima H, Watanabe K (2009) 1 st-YellowSeaRim Liaison lecturers & meeting, life and food science. Saga University, Japan 33

    Google Scholar 

  32. Tang MAK, Motoshima H, Watanabe K (2012) African J Biotech (in press)

Download references

Acknowledgments

We would like to thank Dr. Masao Tokunaga and Dr. Yukio Nagano for their interest, encouragement, and valuable discussion. This study was supported in part by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science to KW (15380074) and by Rendai-student Supporting Program of the United Graduate School of Agricultural Sciences, Kagoshima University to AKT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Abul Kashem Tang or Keiichi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M.A.K., Motoshima, H. & Watanabe, K. Fluorescence Studies on the Stability, Flexibility and Substrate-Induced Conformational Changes of Acetate Kinases from Psychrophilic and Mesophilic Bacteria. Protein J 31, 337–344 (2012). https://doi.org/10.1007/s10930-012-9408-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9408-7

Keywords

Navigation