Skip to main content
Log in

Effect of Glucose on the Lactoferrin’s Conformation and its Effect on MC 3T3-E1 Cell Proliferation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The objective of this research was to investigate the influence of glucose on bovine lactoferrin’s (LF) conformation, thermodynamic stability and osteoblastic cell proliferation. The conformation and thermodynamic stability of LF was detected by spectroscopic and differential scanning calorimetry (DSC). The osteoblastic cell proliferation of LF at physiological concentrations (100 μg/ml) was measured by BrdU incorporation. The binding constant between glucose and LF is KSV = 5 × 10−3, and Tyr residues of LF were located in a more hydrophobic environment, while Trp residues were located in a more hydrophilic environment. LF with glucose had increased α-helix and β-sheet contents by 6 and 14 %, respectively. It showed a two-step denaturation of LF. There was a gradual changs in the denaturation temperature and the calorimetric enthalpies (ΔHcal) with a growing concentration of glucose. It has also revealed that glucose dose dependently reduced the ability of LF to increase MC 3T3-E1 cell proliferation. Increasing the binding with glucose, LF might cause to change its native state, which reduced the stimulation activity of osteoblasts cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LF:

Lactoferrin

bLF:

Bovine lactoferrin

DSC:

Differential scanning calorimetry

Tm:

Denaturation temperature

ΔHcal:

Calorimetric enthalpies

LF: G:

The molar ratio of LF: glucose

References

  1. Aggeli A, Bell M, Boden N, Keen JN, McLeish TCB, Nyrkova I, Radford SE, Semenov A (1997) J Mater Chem 7(7):1135–1145

    Article  CAS  Google Scholar 

  2. Bengoechea C, Peinado I, McClements DJ (2011) Food Hydrocoll 25(5):1354–1360

    Article  CAS  Google Scholar 

  3. Cornish J, Callon KE, Naot D, Palmano KP, Banovic T, Bava U, Watson M, Lin JM, Tong PC, Chen Q, Chan VA, Reid HE, Fazzalari N, Baker HM, Baker EN, Haggarty NW, Grey AB, Reid IR (2004) Endocrinology 145(9):4366–4374

    Article  CAS  Google Scholar 

  4. Eftink MR, Ghiron CA (1981) Anal Biochem 114(2):199–227

    Article  CAS  Google Scholar 

  5. Engelmayer J, Varadhachary A (2007) US 0726 312 2279

  6. Falconi M, Bozzi M, Paci M, Raudino A, Purrello R, Cambria A, Sette M, Cambria MT (2001) Int J Biol Macromol 29(3):161–168

    Article  CAS  Google Scholar 

  7. Fan J-c, Chen X, Wang Y, Fan C-p, Shang Z-c (2006) J Zhejiang Univ Sci B 7(6):452–458

    Article  CAS  Google Scholar 

  8. Greenfield NJ (2006) Nat Protoc 1(6):2876–2890

    Article  CAS  Google Scholar 

  9. H-y Guo, Jiang L, Ibrahim SA, Zhang L, Zhang H, Zhang M, Ren F-z (2009) J Nutr 139(5):958–964

    Article  Google Scholar 

  10. Harada E, Itoh Y, Sitizyo K, Takeuchi T, Araki Y, Kitagawa H (1999) Comp Biochem Phys A 124(3):321–327

    Article  CAS  Google Scholar 

  11. Iafisco M, Foltran I, Di Foggia M, Bonora S, Roveri N (2011) J Therm Anal Calorim 103(1):41–47

    Article  CAS  Google Scholar 

  12. Lizzi AR, Carnicelli V, Clarkson MM, Di Giulio A, Oratore A (2009) Mini-Rev Med Chem 9(6):687–695

    Article  CAS  Google Scholar 

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  14. Masco L, Huys G, De Brandt E, Temmerman R, Swings J (2005) Int J Food Microbiol 102(2):221–230

    Article  CAS  Google Scholar 

  15. Mir R, Kumar RP, Singh N, Vikram GP, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP (2010) Int J Biol Macromol 47(1):50–59

    Article  CAS  Google Scholar 

  16. Naot D, Chhana A, Matthews BG, Callon KE, Tong PC, Lin J-M, Costa JL, Watson M, Grey AB, Cornish J (2011) Bone 49(2):217–224

    Article  CAS  Google Scholar 

  17. Ono T, Morishita S, Fujisaki C, Ohdera M, Murakoshi M, Iida N, Kato H, Miyashita K, Iigo M, Yoshida T, Sugiyama K, Nishino H (2011) Br J Nutr 105(2):200–211

    Article  CAS  Google Scholar 

  18. Pal P, Mahato M, Kamilya T, Talapatra GB (2011) PCCP 13(20):9385–9396

    Article  CAS  Google Scholar 

  19. Piszczek G, D’Auria S, Staiano M, Rossi M, Ginsburg A (2004) Biochem J 381:97–103

    Article  CAS  Google Scholar 

  20. Schanbacher FL, Goodman RE, Talhouk RS (1993) J Dairy Sci 76(12):3812–3831

    Article  CAS  Google Scholar 

  21. Shi J, Tauriainen E, Martonen E, Finckenberg P, Ahlroos-Lehmus A, Tuomainen A, Pilvi TK, Korpela R, Mervaala EM (2011) Int Dairy J 21(8):513–522

    Article  CAS  Google Scholar 

  22. Takayama Y, Mizumachi K (2009) J Biosci Bioeng 107(2):191–195

    Article  CAS  Google Scholar 

  23. Tomita M, Wakabayashi H, Shin K, Yamauchi K, Yaeshima T, Iwatsuki K (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91(1):52–57

    Article  CAS  Google Scholar 

  24. Troost FJ, Steijns J, Saris WHM, Brummer RJM (2001) J Nutr 131(8):2101–2104

    CAS  Google Scholar 

  25. Valmu L, Kalkkinen N, Husa A, Rye PD (2005) Biochemistry (Mosc) 44(49):16007–16013

    Article  CAS  Google Scholar 

  26. Van Berkel PHC, Geerts MEJ, Van Veen HA, Kooiman PM, Pieper FR, De Boer HA, Nuijens JH (1995) Biochem J 312(1):107–114

    Google Scholar 

  27. Vyas NK, Vyas MN, Quiocho FA (1991) J Biol Chem 266(8):5226–5237

    CAS  Google Scholar 

  28. Wakabayashi H, Yamauchi K, Takase M (2006) Int Dairy J 16(11):1241–1251

    Article  CAS  Google Scholar 

  29. Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269

    Article  CAS  Google Scholar 

  30. Yu T, Guo C, Wang J, Hao P, Sui S, Chen X, Zhang R, Wang P, Yu G, Zhang L, Dai Y, Li N (2011) Glycobiology 21(2):206–224

    Article  CAS  Google Scholar 

  31. Zhang G, Que Q, Pan J, Guo J (2008) J Mol Struct 881(1–3):132–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledged this work is supported by Fund for young scholars of Higher Education of China (20100008120009), National Key Technologies R & D Program of China (2012BAD28B08), Chinese Universities Scientific Fund (2011JS113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazheng Ren.

Additional information

Pengcheng Wen and Huiyuan Guo: equal contributors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, P., Guo, H., Zhang, H. et al. Effect of Glucose on the Lactoferrin’s Conformation and its Effect on MC 3T3-E1 Cell Proliferation. Protein J 31, 300–305 (2012). https://doi.org/10.1007/s10930-012-9406-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9406-9

Keywords

Navigation