Skip to main content
Log in

Deceleration of Arginine Kinase Refolding by Induced Helical Structures

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for −2.19 kcal/mol for AutoDock4.2 and −20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AK:

Arginine kinase

HFIP:

1,1,1,3,3,3-Hexafluoroisopropanol

TFE:

2,2,2-Trifluoroethanol

CK:

Creatine kinase

ANS:

8-Anilino-1-naphthalenesulfonic acid

CD:

Circular dichroism

UV:

Ultraviolet

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

References

  1. Abkevich VI, Gutin AM, Shakhnovich EI (1995) J Mol Biol 252:460–471

    Article  CAS  Google Scholar 

  2. Ahmad B, Haq SK, Varshney A, Moosavi-Movahedi AA, Khan RH (2010) Biochemistry (Mosc) 75:486–530

    Article  CAS  Google Scholar 

  3. Ahmad B, Islam Z, Varshney A, Khan RH (2010) Protein Pept Lett 17:660–666

    Article  CAS  Google Scholar 

  4. Anderson VL, Ramlall TF, Rospigliosi CC, Webb WW, Eliezer D (2010) Proc Natl Acad Sci USA 107:18850–18855

    Article  CAS  Google Scholar 

  5. Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  6. Baldwin RL, Rose GD (1999) Trends Biochem Sci 24:26–33

    Article  CAS  Google Scholar 

  7. Benkert P, Künzli M, Schwede T (2009) Nucleic Acids Res 37:W510–W514

    Article  CAS  Google Scholar 

  8. Brockwell DJ, Smith DA, Radford SE (2000) Curr Opin Struct Biol 10:16–25

    Article  CAS  Google Scholar 

  9. Chi CN, Bach A, Engström A, Wang H, Strømgaard K, Gianni S, Jemth P (2009) Biochemistry 48:7089–7097

    Article  CAS  Google Scholar 

  10. Dadlez M (1999) Acta Biochim Pol 46:487–508

    CAS  Google Scholar 

  11. Daggett V, Fersht A (2003) Natl Rev Mol Cell Biol 4:497–502

    Article  CAS  Google Scholar 

  12. Glyakina AV, Galzitskaya OV (2010) Biochemistry (Mosc) 75:995–1005

    Article  CAS  Google Scholar 

  13. Havens J, Castellani M, Kleinschroth T, Ludwig B, Durham B, Millett F (2011) Biochemistry 50:10462–10472

    Article  CAS  Google Scholar 

  14. Huang K, Park YD, Cao ZF, Zhou HM (2001) Biochim Biophys Acta 1545:305–313

    Article  CAS  Google Scholar 

  15. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  16. Lewandowska A, Ołdziej S, Liwo A, Scheraga HA (2010) Biophys Chem 151:1–9

    Article  CAS  Google Scholar 

  17. Li C, Sun S, Park D, Jeong HO, Chung HY, Liu XX, Zhou HM (2011) Int J Biol Macromol 49:910–916

    Article  CAS  Google Scholar 

  18. Liu N, Wang JS, Wang WD, Pan JC (2011) Int J Biol Macromol 49:98–102

    Article  CAS  Google Scholar 

  19. López-Hernández E, Cronet P, Serrano L, Muñoz V (1997) J Mol Biol 266:610–620

    Article  Google Scholar 

  20. Lü ZR, Oh SH, Zhou SS, Zou HC, Park D, Park SJ, Zhou HW, Bhak J, Park YD, Zou F (2010) Appl Biochem Biotechnol 160:831–842

    Article  Google Scholar 

  21. Lü ZR, Wang YJ, Lee DY, Park YD, Zou HC, Zou F (2009) J Biomol Struct Dyn 26:567–574

    Google Scholar 

  22. Miyawaki O, Tatsuno M (2011) J Biosci Bioeng 111:198–203

    Article  CAS  Google Scholar 

  23. Mohan PM, Hosur RV (2009) J Biosci 34:465–479

    Article  CAS  Google Scholar 

  24. Mu H, Lü ZR, Park D, Kim BC, Bhak J, Zou F, Yang JM, Li S, Park YD, Zou HC, Zhou HM (2010) Appl Biochem Biotechnol 160:1309–1320

    Article  CAS  Google Scholar 

  25. Naseem F, Khan RH (2005) Biochim Biophys Acta 1723:192–200

    Article  CAS  Google Scholar 

  26. Pan JC, Yu Z, Su XY, Sun YQ, Rao XM, Zhou HM (2004) Protein Sci 13:1892–1901

    Article  CAS  Google Scholar 

  27. Radford SE (2000) Trends Biochem Sci 25:611–618

    Article  CAS  Google Scholar 

  28. Roccatano D, Fioroni M, Zacharias M, Colombo G (2005) Protein Sci 14:2582–2589

    Article  CAS  Google Scholar 

  29. Scharnagl C, Reif M, Friedrich J (2005) Biochim Biophys Acta 1749:187–213

    CAS  Google Scholar 

  30. Sen P, Ahmad B, Rabbani G, Khan RH (2010) Int J Biol Macromol 46:250–254

    Article  CAS  Google Scholar 

  31. Shi L, Xia Y, Zhang M, Yin SJ, Si YX, Qian GY, Lü ZR, Zhou HM, Park D, Chung HY, Zou F, Park YD (2011) Protein Pept Lett 18:726–732

    Article  CAS  Google Scholar 

  32. Suzuki T, Kawasaki Y, Furukohri T (1997) Biochem J 328:301–306

    CAS  Google Scholar 

  33. Teixeira J (2009) Gen Physiol Biophys 28:168–173

    Article  CAS  Google Scholar 

  34. Uversky VN (2009) Protein J 28:305–325

    Article  CAS  Google Scholar 

  35. Weinkam P, Zimmermann J, Romesberg FE, Wolynes PG (2010) Acc Chem Res 43:652–660

    Article  CAS  Google Scholar 

  36. Wong KB, Clarke J, Bond CJ, Neira JL, Freund SM, Fersht AR, Daggett V (2000) J Mol Biol 296:1257–1282

    Article  CAS  Google Scholar 

  37. Yousef MS, Fabiola F, Gattis JL, Somasundaram T, Chapman MS (2002) Acta Crystallogr D Biol Crystallogr 58:2009–2017

    Article  Google Scholar 

  38. Yu Z, Pan J, Zhou HM (2002) Protein Pept Lett 9:545–552

    Article  CAS  Google Scholar 

  39. Zou HC, Yu ZH, Wang YJ, Yang JM, Zhou HM, Meng FG, Park YD (2007) J Biomol Struct Dyn 24:359–368

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from the Science and Technology Bureau of Jiaxing, Zhejiang (No. 2008AY2032) and the Science and Technology Planning Project of Zhejiang Province (No. 2010C33139). Dr. Wei-Jiang Hu was supported by a grant from China Postdoctoral Science Foundation (No. 20060400467). Dr. Hae Young Chung was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MOST) (No. 20090083538) and thanks Aging Tissue Bank for providing research information. Dr. Jun-Mo Yang was supported by the grant of the Korea Health 21 R&D Project (Ministry of Health, Welfare and Family Affairs, Republic of Korea, 01-PJ3-PG6-01GN12-0001) and by a grant (Grant No. C-A9-220-1) from Samsung Biomedical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan-Guo Meng or Wei-Jiang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HL., Zhou, SM., Park, D. et al. Deceleration of Arginine Kinase Refolding by Induced Helical Structures. Protein J 31, 267–274 (2012). https://doi.org/10.1007/s10930-012-9397-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9397-6

Keywords

Navigation