Skip to main content
Log in

Effects of Furanocoumarins from Apiaceous Vegetables on the Catalytic Activity of Recombinant Human Cytochrome P-450 1A2

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Inhibition of cytochrome P-450 1A2 (CYP1A2)-mediated activation of procarcinogens may be an important chemopreventive mechanism. Consumption of apiaceous vegetables (rich in furanocoumarins) inhibits CYP1A2 in humans. Because many furanocoumarins are potent inhibitors of several CYPs, we characterized the effects of three furanocoumarins from apiaceous vegetables on human CYP1A2 (hCYP1A2). We assessed hCYP1A2 methoxyresorufin O-demethylase (MROD) activity using microsomes from Saccharomyces cerevisiae expressing hCYP1A2. Isopimpinellin exhibited mechanism-based inactivation (MBI) of hCYP1A2 (K i  = 1.2 μM, k inact = 0.34 min−1, and partition ratio = 8). Imperatorin and trioxsalen were characterized as mixed inhibitors with K i values of 0.007 and 0.10 μM, respectively. These results indicate that even if present at low levels in apiaceous vegetables, imperatorin, trioxsalen and isopimpinellin may contribute significantly to CYP1A2 inhibition and potentially decreased procarcinogen activation. Moreover, the in vivo effect of isopimpinellin on CYP1A2 may be longer lasting compared to reversible inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

5-MOP:

5-Methoxypsoralen

8-MOP:

8-Methoxypsoralen

CYP:

Cytochrome P-450

CYP1A2:

Cytochrome P-450 1A2

DMSO:

Dimethyl sulfoxide

HBSS:

Hank’s balanced salt solution

hCYP1A2:

Human cytochrome P-450 1A2

MBI:

Mechanism-based inactivator

MROD:

Methoxyresorufin O-demethylase

NADPH:

β-Nicotinamideadenine dinucleotidephosphate

References

  1. Beattie PE, Wilkie MJ, Smith G, Ferguson J, Ibbotson SH (2007) J Am Acad Dermatol 56:84–87

    Article  Google Scholar 

  2. Bendriss EK, Bechtel Y, Bendriss A, Humbert PH, Paintaud G, Magnette J, Agache P, Bechtel PR (1996) Br J Clin Pharmacol 41:421–424

    Article  CAS  Google Scholar 

  3. Berthou F, Flinois JP, Ratanasavanh D, Beaune P, Riche C, Guillouzo A (1991) Drug Metab Dispos 19:561–567

    CAS  Google Scholar 

  4. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  5. Busby WF Jr, Ackermann JM, Crespi CL (1999) Drug Metab Dispos 27:246–249

    CAS  Google Scholar 

  6. Cai Y, Bennett D, Nair RV, Ceska O, Ashwood-Smith MJ, DiGiovanni J (1993) Chem Res Toxicol 6:872–879

    Article  CAS  Google Scholar 

  7. Chang TK, Chen J, Lee WB (2001) J Pharmacol Exp Ther 299:874–882

    CAS  Google Scholar 

  8. Clarke SE, Ayrton AD, Chenery RJ (1994) Xenobiotica 24:517–526

    Article  CAS  Google Scholar 

  9. Copp LJ (2003) In: Marangoni AG (ed) Enzyme kinetics: a modern approach. Wiley, New York, pp 158–173

  10. Dierks EA, Stams KR, Lim HK, Cornelius G, Zhang H, Ball SE (2001) Drug Metab Dispos 29:23–29

    CAS  Google Scholar 

  11. Draper AJ, Madan A, Parkinson A (1997) Arch Biochem Biophys 341:47–61

    Article  CAS  Google Scholar 

  12. Easterbrook J, Lu C, Sakai Y, Li AP (2001) Drug Metab Dispos 29:141–144

    CAS  Google Scholar 

  13. Eugster HP, Sengstag C (1993) Toxicology 82:61–73

    Article  CAS  Google Scholar 

  14. Eugster HP, Sengstag C, Meyer UA, Hinnen A, Wurgler FE (1990) Biochem Biophys Res Commun 172:737–744

    Article  CAS  Google Scholar 

  15. Fairman DA, Collins C, Chapple S (2007) Drug Metab Dispos 35:2159–2165

    Article  CAS  Google Scholar 

  16. Gallagher EP, Kunze KL, Stapleton PL, Eaton DL (1996) Toxicol Appl Pharmacol 141:595–606

    Article  CAS  Google Scholar 

  17. Heinonen JT, Sidhu JS, Reilly MT, Farin FM, Omiecinski CJ, Eaton DL, Kavanagh TJ (1996) Environ Health Perspect 104:536–543

    Article  CAS  Google Scholar 

  18. Hollenberg PF, Kent UM, Bumpus NN (2008) Chem Res Toxicol 21:189–205

    Article  CAS  Google Scholar 

  19. Kalgutkar AS, Obach RS, Maurer TS (2007) Curr Drug Metab 8:407–447

    Article  CAS  Google Scholar 

  20. Kent UM, Juschyshyn MI, Hollenberg PF (2001) Curr Drug Metab 2:215–243

    Article  CAS  Google Scholar 

  21. Kleiner HE, Reed MJ, DiGiovanni J (2003) Chem Res Toxicol 16:415–422

    Article  CAS  Google Scholar 

  22. Kleiner HE, Vulimiri SV, Miller L, Johnson WH Jr, Whitman CP, DiGiovanni J (2001) Carcinogenesis 22:73–82

    Article  CAS  Google Scholar 

  23. Klotz AV, Stegeman JJ, Walsh C (1984) Anal Biochem 140:138–145

    Article  CAS  Google Scholar 

  24. Koenigs LL, Trager WF (1998) Biochemistry 37:13184–13193

    Article  CAS  Google Scholar 

  25. Koenigs LL, Trager WF (1998) Biochemistry 37:10047–10061

    Article  CAS  Google Scholar 

  26. Kunze KL, Trager WF (1993) Chem Res Toxicol 6:649–656

    Article  CAS  Google Scholar 

  27. Lampe JW, King IB, Li S, Grate MT, Barale KV, Chen C, Feng Z, Potter JD (2000) Carcinogenesis 21:1157–1162

    Article  CAS  Google Scholar 

  28. Lee H, Yeom H, Kim YG, Yoon CN, Jin C, Choi JS, Kim BR, Kim DH (1998) Biochem Pharmacol 55:1369–1375

    Article  CAS  Google Scholar 

  29. Lin JH, Lu AY (1998) Clin Pharmacokinet 35:361–390

    Article  CAS  Google Scholar 

  30. Mays DC, Camisa C, Cheney P, Pacula CM, Nawoot S, Gerber N (1987) Clin Pharmacol Ther 42:621–626

    Article  CAS  Google Scholar 

  31. Miyazaki M, Yamazaki H, Takeuchi H, Saoo K, Yokohira M, Masumura K, Nohmi T, Funae Y, Imaida K, Kamataki T (2005) Carcinogenesis 26:1947–1955

    Article  CAS  Google Scholar 

  32. Obach RS, Walsky RL, Venkatakrishnan K (2007) Drug Metab Dispos 35:246–255

    Article  CAS  Google Scholar 

  33. OMURA T, SATO R (1964) J Biol Chem 239:2379–2385

    Google Scholar 

  34. Ono S, Hatanaka T, Hotta H, Satoh T, Gonzalez FJ, Tsutsui M (1996) Xenobiotica 26:681–693

    Article  CAS  Google Scholar 

  35. Patten CJ, Smith TJ, Murphy SE, Wang MH, Lee J, Tynes RE, Koch P, Yang CS (1996) Arch Biochem Biophys 333:127–138

    Article  CAS  Google Scholar 

  36. Peroutka R, Schulzova V, Botek P, Hajslova J (2007) J Sci Food Agri 87:2152–2163

    Article  CAS  Google Scholar 

  37. Peterson S, Lampe JW, Bammler TK, Gross-Steinmeyer K, Eaton DL (2006) Food Chem Toxicol 44:1474–1484

    Article  CAS  Google Scholar 

  38. Peterson S, Schwarz Y, Li SS, Li L, King IB, Chen C, Eaton DL, Potter JD, Lampe JW (2009) Cancer Epidemiol Biomarkers Prev 18:3118–3125

    Article  CAS  Google Scholar 

  39. Polychronaki N, Wild CP, Mykkanen H, Amra H, Abdel-Wahhab M, Sylla A, Diallo M, El-Nezami H, Turner PC (2008) Food Chem Toxicol 46:519–526

    Article  CAS  Google Scholar 

  40. Schlatter J, Zimmerli B, Dick R, Panizzon R, Schlatter C (1991) Food Chem Toxicol 29:523–530

    Article  CAS  Google Scholar 

  41. Seligman PJ, Mathias CG, O’Malley MA, Beier RC, Fehrs LJ, Serrill WS, Halperin WE (1987) Arch Dermatol 123:1478–1482

    Article  CAS  Google Scholar 

  42. Sellers EM, Ramamoorthy Y, Zeman MV, Djordjevic MV, Tyndale RF (2003) Nicotine Tob Res 5:891–899

    Article  CAS  Google Scholar 

  43. Sengstag C, Wurgler FE (1994) Mol Carcinog 11:227–235

    Article  CAS  Google Scholar 

  44. Sesardic D, Boobis AR, Murray BP, Murray S, Segura J, de la Torre R, Davies DS (1990) Br J Clin Pharmacol 29:651–663

    Article  CAS  Google Scholar 

  45. Silverman RB (1988) Mechanism-based enzyme inactivation: chemistry and enzymology. CRC Press, Boca Raton

    Google Scholar 

  46. Silverman RB (1995) Methods Enzymol 249:240–283

    Article  CAS  Google Scholar 

  47. Takeuchi H, Saoo K, Matsuda Y, Yokohira M, Yamakawa K, Zeng Y, Miyazaki M, Fujieda M, Kamataki T, Imaida K (2006) Cancer Lett 234:232–238

    Article  CAS  Google Scholar 

  48. Turesky RJ, Guengerich FP, Guillouzo A, Langouet S (2002) Mutat Res 506–507:187–195

    Google Scholar 

  49. Viola G, Facciolo L, Vedaldi D, Disaro S, Basso G, Dall’Acqua F (2004) Photochem Photobiol Sci 3:237–239

    Article  CAS  Google Scholar 

  50. von Weymarn LB, Zhang QY, Ding X, Hollenberg PF (2005) Carcinogenesis 26:621–629

    Article  Google Scholar 

  51. Yeo UC, Shin JH, Yang JM, Park KB, Kim MM, Bok HS, Lee ES (2000) Br J Dermatol 142:733–739

    Article  CAS  Google Scholar 

  52. Zucchi A, Raho E, Marconi B, Nicoli S, Santini M, Allegra F, Colombo P, Bettini R, Santi P (2001) J Invest Dermatol 117:379–382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge and thank Dr. Patrick Hanna (Department of Medicinal Chemistry, University of Minnesota) and Dr. Linda von Weymarn (Masonic Cancer Center, University of Minnesota) for their expert guidance. The authors also thank Li Liu for assistance with development of assays. This work has been supported in part by the Minnesota Agricultural Experiment Station and by Award Number T32CA132670 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, AY., Young, L.R., Dingfelder, C. et al. Effects of Furanocoumarins from Apiaceous Vegetables on the Catalytic Activity of Recombinant Human Cytochrome P-450 1A2. Protein J 30, 447–456 (2011). https://doi.org/10.1007/s10930-011-9350-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9350-0

Keywords

Navigation