Skip to main content

Advertisement

Log in

Identification, Molecular and Functional Characterization of Calmodulin Gene of Phytomonas serpens 15T that Shares High Similarity with its Pathogenic Counterparts Trypanosoma cruzi

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In trypanosomatids, Ca2+-binding proteins can affect parasite growth, differentiation and invasion. Due to their importance for parasite maintenance, they become an attractive target for drug discovery and design. Phytomonas serpens 15T is a non-human pathogenic trypanosomatid that expresses important protein homologs of human pathogenic trypanosomatids. In this study, the coding sequence of calmodulin, a Ca2+-binding protein, of P. serpens 15T was cloned and characterized. The encoded polypeptide (CaMP) displayed high amino acid identity to homolog protein of Trypanosoma cruzi and four helix-loop-helix motifs were found. CaMP sequence analysis showed 20 amino acid substitutions compared to its mammalian counterparts. This gene is located on a chromosomal band with estimated size of 1,300 kb and two transcripts were detected by Northern blot analysis. A polyclonal antiserum raised against the recombinant protein recognized a polypeptide with an estimated size of 17 kDa in log-phase promastigote extracts. The recombinant CaMP retains its Ca2+-binding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CaMP:

Calmodulin from Phytomonas serpens 15T

dNTP:

2′ Deoxynucleoside-5′ triphosphate

EDTA:

Ethylene-diamine tetraacetic acid

EF:

Hand helix-loop-helix structural domain

EST:

Expressed sequence tag

GYPMI:

Glucose, yeast extract, peptone, meat infusion culture medium

IPTG:

Isopropyl-β-D-thiogalactopyranoside

SDS:

Sodium dodecyl sulphate

TBE:

Tris-borate-EDTA buffer

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  2. Banerjee C, Sarkar D, Bhaduri A (1999) Parasitology 118:567–573

    Article  Google Scholar 

  3. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) Nucleic Acids Res 32:D138–D141

    Article  CAS  Google Scholar 

  4. Batistoti M, Cavazzana MJr, Serrano MG, Ogatta SF, Baccan GC, Jankevicius JV, Teixeira MM, Jankevicius SI (2001) J. Parasitol 87:1335–1341

    Article  CAS  Google Scholar 

  5. Benaim G, Lopez-Estraño C, Docampo R, Moreno SN (1993) Biochem J 296:759–763

    CAS  Google Scholar 

  6. Benaim G, Moreno SN, Hutchinson G, Cervino V, Hermoso T, Romero PJ, Ruiz F, de Souza W, Docampo R (1995) Biochem J 306:299–303

    CAS  Google Scholar 

  7. Benaim G, Cervino V, Villalobo A (1998) Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 120:57–65

    Article  CAS  Google Scholar 

  8. Buchanan KT, Ames JB, Asfaw SH, Wingard JN, Olson CL, Campana PT, Araújo AP, Engman DM (2005) J Biol Chem 280:40104–40111

    Article  CAS  Google Scholar 

  9. Camargo EP (1999) Adv Parasitol 42:29–112

    Article  CAS  Google Scholar 

  10. Cheung WY (1980) Science 207:19–27

    Article  CAS  Google Scholar 

  11. Chung SH, Swindle J (1990) Nucleic Acids Res 18:4561–4569

    Article  CAS  Google Scholar 

  12. D’Angelo MA, Montagna AE, Sanguineti S, Torres HN, Flawiá MM (2002) J Biol Chem 277:35025–35034

    Article  Google Scholar 

  13. Donovan C (1909) Lancet 177:1495–1496

    Article  Google Scholar 

  14. Eid JE, Sollner-Webb B (1991) Genes Dev 5:2024–2032

    Article  CAS  Google Scholar 

  15. Eisenberg D, Lüthy R, Bowie JU (1997) Methods Enzymol 277:396–404

    Article  CAS  Google Scholar 

  16. Fragoso SP, Goldenberg S (1992) Mol Biochem Parasitol 55:127–134

    Article  CAS  Google Scholar 

  17. Garcia-Marchan Y, Sojo F, Rodriguez E, Zerpa N, Malave C, Galindo-Castro I, Salerno M, Benaim G (2009) Exp Parasitol 123:326–333

    Article  CAS  Google Scholar 

  18. Graça-de Souza VK, Monteiro-Góes V, Manque P, Souza TACB, Corrêa PRC, Buck GA, Ávila AR, Yamauchi LM, Pinge-Filho P, Goldenberg S, Krieger MA, Yamada-Ogatta SF (2010) Biol Res 43:233–241

    Article  Google Scholar 

  19. Jankevicius JV, Itow-Jankevicius S, Campaner M, Conchon I, Maeda L, Teixeira MM, Freymuller E, Camargo EP (1989) J Eukaryot Microbiol 36:265–271

    Article  Google Scholar 

  20. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  21. Lammel EM, Barbieri MA, Wilkowsky SE, Bertini F, Isola EL (1996) Exp Parasitol 83:240–249

    Article  CAS  Google Scholar 

  22. Laskowski RA, Moss DS, Thornton JM (1993) J Mol Biol 231:1049–1067

    Article  CAS  Google Scholar 

  23. Lu HG, Zhong L, Chang KP, Docampo R (1997) J Biol Chem 272:9464–9473

    Article  CAS  Google Scholar 

  24. Maldonado RA, Linss J, Thomaz N, Olson CL, Engman DM, Goldenberg S (1997) Exp Parasitol 86:200–205

    Article  CAS  Google Scholar 

  25. Moreno SN, Silva J, Vercesi AE, Docampo R (1994) J Exp Med 180:1535–1540

    Article  CAS  Google Scholar 

  26. Moreno SN, Docampo R (2003) Curr Opin Microbiol 6:359–364

    Article  CAS  Google Scholar 

  27. Nelson MR, Thulin E, Fagan PA, Forsén S, Chazin WJ (2002) Protein Sci 11:198–205

    Article  CAS  Google Scholar 

  28. Ogueta SB, Solari A, Téllez-Iñón MT (1994) FEBS Lett 337:293–297

    Article  CAS  Google Scholar 

  29. GJJr Pappas, Benabdellah K, Zingales B, González A (2005) Mol Biochem Parasitol 142:149–157

    Article  Google Scholar 

  30. Porcel BM, Bontempi EJ, Henriksson J, Rydaker M, Aslund L, Segura EL, Pettersson U, Ruiz AM (1996) Exp Parasitol 84:387–399

    Article  CAS  Google Scholar 

  31. Portman N, Lacomble S, Thomas B, McKean PG, Gull K (2009) J Biol Chem 284:5610–5619

    Article  CAS  Google Scholar 

  32. Ridgley E, Webster P, Patton C, Ruben L (2000) Mol Biochem Parasitol 109:195–201

    Article  CAS  Google Scholar 

  33. Rivarola HW, Bustamante JM, Lo Presti S, Fernández AR, Enders JE, Gea S, Fretes R, Paglini-Oliva P (2005) Exp Parasitol 111:80–86

    Article  CAS  Google Scholar 

  34. Sambrook J, Russel DW (2001) Preparation and analysis of eukaryotic genomic DNA; Extraction, purification and analysis of mRNA from eukaryotic cells. In: Molecular cloning: a laboratory manual, 3rd ed, Cold Spring Harbor Laboratory, New York, USA

  35. Santos AL, d’Ávila-Levy CM, Elias CG, Vermelho AB, Branquinha MH (2007) Microbes Infect 9:915–921

    Article  CAS  Google Scholar 

  36. Serrano MG, Nunes LR, Campaner M, Buck GA, Camargo EP, Teixeira MM (1999) Exp Parasitol 91:268–279

    Article  CAS  Google Scholar 

  37. Sivaprakasam P, Tosso PN, Doerksen RJ (2009) Structure-activity relationship and comparative docking studies or cycloguanil analogs as PfDHFR-TS inhibitors. J Chem Inf Model 49:1787–1796

    Article  CAS  Google Scholar 

  38. Souza CF, Carneiro AB, Silveira AB, Laranja GA, Silva-Neto MA, Costa SC, Paes MC (2009) Biochem Biophys Res Commun 390:541–546

    Article  CAS  Google Scholar 

  39. Téllez-Iñón MT, Ulloa RM, Torruella M, Torres HN (1985) Mol Biochem Parasitol 17:143–153

    Article  Google Scholar 

  40. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  Google Scholar 

  41. Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  Google Scholar 

  42. Trump BF, Berezesky IK (1995) FASEB J 9:219–228

    CAS  Google Scholar 

  43. Tschudi C, Ullu E (1988) EMBO J 7:455–463

    CAS  Google Scholar 

  44. Vickerman K (1994) Int J Parasitol 24:1317–1331

    Article  CAS  Google Scholar 

  45. Wu Y, Deford J, Benjamin R, Lee MG, Ruben L (1994) Biochem J 304:833–841

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Paulo Lorca for help in camP nucleotide sequencing. We are also grateful to Dr. A. Leyva for reading this manuscript. This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária and Pro-Reitoria de Pesquisa e Pós Graduação (PROPPG) of Universidade Estadual de Londrina (UEL). This study was part of the M.Sc. thesis work of T.A.C.B. Souza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sueli Fumie Yamada-Ogatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Arruda Campos Brasil de Souza, T., Graça-de Souza, V.K., Lancheros, C.A.C. et al. Identification, Molecular and Functional Characterization of Calmodulin Gene of Phytomonas serpens 15T that Shares High Similarity with its Pathogenic Counterparts Trypanosoma cruzi . Protein J 30, 212–219 (2011). https://doi.org/10.1007/s10930-011-9322-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9322-4

Keywords

Navigation