Skip to main content
Log in

Metastability of Papain and the Molecular Mechanism for its Sequential Acid-Denaturation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Acid unfolding of non-inhibited papain at pH 2 was studied by means of spectroscopic and electrophoresis techniques as well as activity assays. We found a molten globule like species (A state) similar to that previously reported for bromelain and S-carboxy-methyl-papain. We demonstrated that this A state is not thermodynamically stable but a metastable conformer which decays into an unfolded conformation in a few hours. The mechanism of acid unfolding to the A state proved to be completely irreversible, with a biphasic time evolution of spectroscopic signals characteristic of the existence of a kinetic intermediate. This latter species showed properties in-between native and A state such as secondary structure, exposition of hydrophobic area and tryptophan environment, but a native like hydrodynamic radius. Native papain seems to unfold at acid pH through at least two kinetic barriers, being its proregion mandatory to conduct and stabilize its active structure. Computer simulations of acid unfolding, followed by ANS docking, identified three regions of cavity formation induced by acid media which might be used as regions to be fortified by protein engineering in the quest for extreme-resistant proteases or as hot-spots for protease inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CXP:

S-carboxy-methyl papain

SDS:

Sodium dodecyl sulfate

ANS:

8-Anilino-1-naphthalensulfonic acid

DTNB:

5,5′-dithiobis-(2-nitrobenzoic acid)

CD:

Circular dichroism

Fi:

Intrinsic fluorescence

Fans:

ANS fluorescence

References

  1. Agyare KK, Damodaran S (2010) J Agric Food Chem 58:1946–1953

    Article  CAS  Google Scholar 

  2. Ahmad E, Fatima S, Khan MM, Khan RH (2010) Biochimie 92:885–893

    Article  CAS  Google Scholar 

  3. Almeida PC, Nantes IL, Rizzi CC, Júdice WA, Chagas JR, Juliano L, Nader HB, Tersariol IL (1999) J Biol Chem 274:30433–30438

    Article  CAS  Google Scholar 

  4. Andrade MA, Chacón P, Merelo JJ, Morán F (1993) Prot Eng 6:383–390. http://www.embl-heidelberg.de/~andrade/k2d/

  5. Baker EN, Drenth J (1987) In: Jurnak FA, McPherson A (eds) Biological macromolecules y assemblies. Willey, New York, pp 313–368

    Google Scholar 

  6. Bowman GR, Pande VS (2010) Proc Natl Acad Sci USA 107:10890–10895

    Article  CAS  Google Scholar 

  7. Cabrita LD, Bottomley SP (2004) Eur Biophys J 33:83–88

    Article  CAS  Google Scholar 

  8. Cappetta M, Roth I, Díaz A, Tort J, Roche L (2002) Biol Chem 383:1215–1221

    Article  CAS  Google Scholar 

  9. Chen CX, Jiang B, Carrey EA, Zhu LM (2010) Appl Biochem Biotechnol 162:1506–1516

    Article  Google Scholar 

  10. Cheriyan S, Abraham ET (2010) J Hazard Mater 176:1097–1100

    Article  CAS  Google Scholar 

  11. Chevigné A, Dumez ME, Dumoulin M, Matagne A, Jacquet A, Galleni M (2010) Biochim Biophys Acta 1800:937–945

    Google Scholar 

  12. Choudhury D, Roy S, Chakrabarti C, Biswas S, Dattagupta JK (2009) Phytochemistry 70:465–472

    Article  CAS  Google Scholar 

  13. Clark AT, Smith K, Muhandiram R, Edmondson SP, Shriver JW (2007) J Mol Biol 372:992–1008

    Article  CAS  Google Scholar 

  14. Compton LA, Johnson WC (1986) Anal Biochem 155:155–167

    Article  CAS  Google Scholar 

  15. Creighton TE (1989) In: Creighton TE (ed) Protein structure a practical approach. IRL Press, Oxford, p 157

    Google Scholar 

  16. Dardenne LE, Werneck AS, de Oliveira Neto M, Bisch PM (2003) Proteins 52:236–253

    Article  CAS  Google Scholar 

  17. Devaraj KB, Kumar PR, Prakash V (2009) Int J Biol Macromol 45:248–254

    Article  CAS  Google Scholar 

  18. Edwin F, Jagannadham MV (1998) Biochem Biophys Res Commun 252:654–660

    Article  CAS  Google Scholar 

  19. Edwin F, Sharma YV, Jagannadham MV (2002) Biochem Biophys Res Commun 290:1441–1446

    Article  CAS  Google Scholar 

  20. Edwin F, Sharma YV, Jagannadham MV (2002) Biochem Biophys Res Comm 290:1441–1446

    Article  CAS  Google Scholar 

  21. Frizler M, Stirnberg M, Sisay MT, Gütschow M (2010) Curr Top Med Chem 10:294–322

    Article  CAS  Google Scholar 

  22. Glazer AN, Smith EL (1971) In: Boyer PD (ed) The enzymes, vol 3. Academic Press, New York, pp 501–546

    Google Scholar 

  23. Gutiérrez-González LH, Rojo-Domínguez A, Cabrera-González NE, Pérez-Montfort R, Padilla-Zúñiga AJ (2006) Arch Biochem Biophys 446:151–160

    Article  Google Scholar 

  24. Haq SK, Rasheedi S, Khan RH (2002) Eur J Biochem 269:47–52

    Article  CAS  Google Scholar 

  25. Hennessey JP Jr, Johnson WC Jr (1982) Anal Biochem 125:177–188

    Article  CAS  Google Scholar 

  26. Hernández-Arana A, Soriano-García M (1988) Biochim Biophys Acta 954:170–175

    Article  Google Scholar 

  27. Huet J, Looze Y, Bartik K, Raussens V, Wintjens R, Boussard P (2006) Biochem Biophys Res Commun 341:620–626

    Article  CAS  Google Scholar 

  28. Jacobs DJ (2010) Curr Opin Pharmacol (In press)

  29. Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (2005) Acc Chem Res 38:911–921

    Article  CAS  Google Scholar 

  30. Khurana R, Udgaonkar JB (1994) Biochemistry 33:106–115

    Article  CAS  Google Scholar 

  31. Kramer G, Paul A, Kreusch A, Schüler S, Wiederanders B, Schilling K (2007) Protein Expr Purif 54:147–156

    Article  CAS  Google Scholar 

  32. Ladokhin AS, Fernández-Vidal M, White SH (2010) J Membr Biol 236:247–253

    Article  CAS  Google Scholar 

  33. Leandro J, Simonsen N, Saraste J, Leandro P, Flatmark T (2011) Biochim Biophys Acta 1812:106–120

    CAS  Google Scholar 

  34. López-Arenas L, Solís-Mendiola S, Hernández-Arana A (1999) Biochemistry 38:15936–15943

    Article  Google Scholar 

  35. López-Arenas L, Solís-Mendiola S, Padilla-Zúñiga J, Hernández-Arana A (2006) Biochim Biophys Acta 1764:1260–1267

    Google Scholar 

  36. Lundqvist M, Sethson I, Jonsson BH (2005) Biochemistry 44:10093–10099

    Article  CAS  Google Scholar 

  37. Mason JM, Hagemann UB, Arndt KM (2007) J Biol Chem 282:23015–23024

    Article  CAS  Google Scholar 

  38. Ménard R, Khouri HE, Plouffe C, Dupras R, Ripoll D, Vernet T, Tessier DC, Lalberté F, Thomas DY, Storer AC (1990) Biochemistry 29:6706–6713

    Article  Google Scholar 

  39. Mickler M, Dima RI, Dietz H, Hyeon C, Thirumalai D, Rief M (2007) Proc Natl Acad Sci USA 104:20268–20273

    Article  CAS  Google Scholar 

  40. Nallamsetty S, Dubey VK, Pande M, Ambasht PK, Jagannadham MV (2007) Biochimie 89:1416–1424

    Article  CAS  Google Scholar 

  41. Oliveberg M, Vuilleumier S, Fersht AR (1994) Biochemistry 33:8826–8832

    Article  CAS  Google Scholar 

  42. Padilla-Zúñiga AJ, Rojo-Domínguez A (1998) Fold Des 3:271–284

    Article  Google Scholar 

  43. Privalov PL (1979) Adv Protein Chem 33:167–241

    Article  CAS  Google Scholar 

  44. Ramundo J, Gray M (2008) J Wound Ostomy Cont Nurs 35(3):273–280

    Google Scholar 

  45. Roongsawang N, Promdonkoy P, Wongwanichpokhin M, Sornlake W, Puseenam A, Eurwilaichitr L, Tanapongpipat S (2010) FEMS Yeast Res 10:909–916

    Article  CAS  Google Scholar 

  46. Sánchez-Ruiz JM (2010) Biophys Chem 148:1–15

    Article  Google Scholar 

  47. Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A, Wiederanders B (2009) Biol Chem 390:167–174

    Article  CAS  Google Scholar 

  48. Solís-Mendiola S, Gutiérrez-González LH, Arroyo-Reyna A, Padilla-Zúñiga J, Rojo-Domínguez A, Hernández-Arana A (1998) Biochim Biophys Acta 1388:363–372

    Article  Google Scholar 

  49. Solís-Mendiola S, Rojo-Domínguez A, Hernández-Arana A (1993) Biochim Biophys Acta 1203:121–125

    Article  Google Scholar 

  50. Song J, Xu P, Xiang H, Su Z, Storer AC, Ni F (2000) FEBS Lett 475:157–162

    Article  CAS  Google Scholar 

  51. Street TO, Barrick D (2009) Protein Sci 18:58–68

    CAS  Google Scholar 

  52. Swanson MC, Boiano JM, Galson SK, Grauvogel LW, Reed CE (1992) Am Ind Hyg Assoc J 53:1–5

    CAS  Google Scholar 

  53. Traversa E, Machado-Santelli GM, Velasco MV (2007) Int J Pharm 335:163–166

    Article  CAS  Google Scholar 

  54. Turk B, Turk D, Turk V (2000) Biochim Biophys Acta 1477:98–111

    Article  CAS  Google Scholar 

  55. Vernet T, Berti PJ, de Montigny C, Musil R, Tessier DC, Ménard R, Magny MC, Storer AC, Thomas DY (1995) J Biol Chem 270:10838–10846

    Article  CAS  Google Scholar 

  56. Wang J, Xiang YF, Lim C (1994) Protein Eng 7:75–82

    Article  CAS  Google Scholar 

  57. Wiederanders B (2003) Acta Biochim Pol 50:691–713

    CAS  Google Scholar 

  58. Wiederanders B, Kaulmann G, Schilling K (2003) Curr Protein Pept Sci 4:309–326

    Article  CAS  Google Scholar 

  59. Wiener JJ, Sun S, Thurmond RL (2010) Curr Top Med Chem 10:717–732

    Article  CAS  Google Scholar 

  60. Wright SK, Viola RE (1998) Anal Biochem 265:8–14

    Article  CAS  Google Scholar 

  61. Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colón W (2007) Proc Natl Acad Sci USA 104:17329–17334

    Article  CAS  Google Scholar 

  62. Yadav SC, Jagannadham MV, Kundu S (2010) Eur Biophys J 39:1385–1396

    Article  CAS  Google Scholar 

  63. Yamamoto Y, Kurata M, Watabe S, Murakami R, Takahashi SY (2002) Curr Protein Pept Sci 3:231–238

    Article  CAS  Google Scholar 

  64. Yao Q, Cui J, Zhu Y, Wang G, Hu L, Long C, Cao R, Liu X, Huang N, Chen S, Liu L, Shao F (2009) Proc Natl Acad Sci USA 106:3716–3721

    Article  CAS  Google Scholar 

  65. Zhang Q, Buckle AM, Law RH, Pearce MC, Cabrita LD, Lloyd GJ, Irving JA, Smith AI, Ruzyla K, Rossjohn J, Bottomley SP, Whisstock JC (2007) EMBO Rep 8:658–663

    Article  CAS  Google Scholar 

  66. Zhang S, Xia K, Chung WK, Cramer SM, Colón W (2010) Protein Sci 19:888–892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the significant contribution of Dr. Andrés Hernández-Arana to this work and financial support from CONACYT (México) with grants 105532, ECOS-M05S01 and the fellowship 123806 to R.E.F.-Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Rojo-Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fosado-Quiroz, R.E., Rojo-Domínguez, A. Metastability of Papain and the Molecular Mechanism for its Sequential Acid-Denaturation. Protein J 30, 184–193 (2011). https://doi.org/10.1007/s10930-011-9319-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9319-z

Keywords

Navigation