Skip to main content
Log in

Spermidine Delays Eye Lens Opacification in vitro by Suppressing Transglutaminase-Catalyzed Crystallin Cross-Linking

  • Published:
The Protein Journal Aims and scope Submit manuscript


A Ca2+-dependent TG activity, identified in the eye lens of several mammalian species, has long been implicated in cataract formation. The precise mechanism of the involvement of this enzyme in this process remains unclear. The purpose of this work was to investigate the modulatory effect of polyamines on TG activity during rabbit eye lens in vitro opacification. We observed, in an in vitro Ca2+-induced cataract model, a rapid decrease of the endogenous levels of SPD with the progression of opacification, paralleled by an increase of crystallin cross-linking by bis(γ-glutamyl)SPD. This pattern was reversed adding exogenous SPD to the incubation medium. Indeed, endogenous SPD levels were restored and cross-linking by bis(γ-glutamyl)SPD were drastically reduced. Surprisingly, under this experimental condition, the loss of transparency of lens was delayed. We found that exogenous SPD incubation led to a remarkable increase of mono(γ-glutamyl)SPD, likely responsible of the inhibition of cross-linking of lens crystallins and of the transparency persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others











Phosphate buffer saline


Ethylene glycol tetraacetic acid


Trichloroacetic acid


Perchloric acid




  1. Andley UP (2009) Curr Mol Med 9:887–892

    Article  CAS  Google Scholar 

  2. Azuma M, Fukiage C, David LL, Shearer TR (1997) Exp Eye Res 64:529–538

    Article  CAS  Google Scholar 

  3. Beninati S, Piacentini M (2004) Amino Acids 26:367–372

    CAS  Google Scholar 

  4. Berbers GAM, Bentlage HCM, Brans AMM, Bloemendal H, deJong WW (1983) Eur J Biochem 135:315–320

    Article  CAS  Google Scholar 

  5. Biswas S, Harris F, Dennison S (2004) Singh J. Phoenix DA 10:78–84

    CAS  Google Scholar 

  6. Biswas S, Harris F, Singh J, Phoenix DA (2004) Mol Cell Biochem 261:169–173

    Article  CAS  Google Scholar 

  7. Boros S, Wilmarth PA, Kamps B, de Jong WW, Bloemendal H, Lampi K, Boelens WC (2008) Exp Eye Res 86:383–393

    Article  CAS  Google Scholar 

  8. Clément S, Velasco PT, Murthy SN, Wilson JH, Lukas TJ, Goldman RD, Lorand L (1998) J Biol Chem 273:7604–7609

    Article  Google Scholar 

  9. Duncan G, Jacob TJC (1984) CIBA Found Symp 206:132–152

    Google Scholar 

  10. Duncan G, Wormstone IM (1999) Eye (Lond) 13:480–483

    Google Scholar 

  11. Fein T, Pande A, Spector A (1979) Invest Ophthalmol Vis Sci 18:761–765

    CAS  Google Scholar 

  12. Folk JE (1983) Adv Enzymol Related Areas Mol Biol 54:1–56

    CAS  Google Scholar 

  13. Folk JE (1983) Methods Enzymol 94:451–457

    Article  CAS  Google Scholar 

  14. Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) J Biol Chem 255:3695–3700

    CAS  Google Scholar 

  15. Harding JJ, Dilley KJ (1976) Exp Eye Res 22:1–73

    Article  CAS  Google Scholar 

  16. Hightower KR, Dering M (1984) Invest Ophthalmol Vis Sci 251:108–111

    Google Scholar 

  17. Jain AK, Lim G, Langford M, Jain SK (2002) Free Radic Biol Med 33:1615–1621

    Article  CAS  Google Scholar 

  18. Kremzner LT, Roy D, Spector A (1983) Exp Eye Res 37:649–659

    Article  CAS  Google Scholar 

  19. Lee HY, Morton JD, Robertson LJ, McDermott JD, Bickerstaffe R, Abell AD, Jones MA, Mehrtens JM, Coxon JM (2008) Clin Exp Ophthalmol 36:852–860

    Article  Google Scholar 

  20. Lentini A, Abbruzzese A, Caraglia M, Marra M, Beninati S (2004) Amino Acids 26:331–337

    Article  CAS  Google Scholar 

  21. Lorand L, Conrad SM (1984) Mol Cell Biochem 58:9–35

    Article  CAS  Google Scholar 

  22. Lorand L, Conrad SM, Velasco PT (1985) Biochemistry 24:1525–1531

    Article  CAS  Google Scholar 

  23. Lorand L, Hsu LKH, Siefring GE Jr, Rafferty NS (1981) Proc Natl Acad Sci USA 78:1356–1360

    Article  CAS  Google Scholar 

  24. Maekawa S, Hibasami H, Uji Y, Nakashima K (1989) Biochimica Biophysica Acta 993:199–203

    CAS  Google Scholar 

  25. Marcantonio JM, Duncan G, Rink H (1986) Exp Eye Res 42:617–630

    Article  CAS  Google Scholar 

  26. Nagai N, Ito Y, Takeuchi N, Usui S, Hirano K (2008) Biol Pharm Bull 31:1990–1995

    Article  CAS  Google Scholar 

  27. Nakamura Y, Fukiage C, Shih M, Ma H, David LL, Azuma M, Shearer TR (2000) Invest Ophthalmol and Visual Sci 41:1460–1466

    CAS  Google Scholar 

  28. Rhodes JD, Sanderson J (2009) Exp Eye Res 88:226–234

    Article  CAS  Google Scholar 

  29. Robertson LJG, Morton JD, Yamaguchi M, Bickerstaffe R, Shearer TR, Azuma M (2005) Invest Ophthalmol and Visual Sci 46:4634–4640

    Article  Google Scholar 

  30. Rossi S, Tabolacci C, Lentini A, Provenzano B, Carlomosti F, Frezzotti S, Beninati S (2010) Anticancer Res 30:445–449

    CAS  Google Scholar 

  31. Sharma KK, Santhoshkumar P (2009) Biochim Biophys Acta 1790:1095–1108

    CAS  Google Scholar 

  32. Shridas P, Sharma Y, Balasubramanian D (2001) FEBS Lett 499:245–250

    Article  CAS  Google Scholar 

  33. Wan XH, Lee EH, Koh HJ, Song J, Kim EK, Kim CY, Lee JB, Kim SY, Yao K, Lee JH (2002) Br J Ophthalmol 86:1293–1298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Simone Beninati.

Additional information

Dr. John E. Folk, one of the fathers of transglutaminase, passed away unexpectedly on 27 December 2010, as the result of an accident. The authors would like to dedicate this work to his memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lentini, A., Tabolacci, C., Mattioli, P. et al. Spermidine Delays Eye Lens Opacification in vitro by Suppressing Transglutaminase-Catalyzed Crystallin Cross-Linking. Protein J 30, 109–114 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI: