Skip to main content
Log in

Characterization of a Single-Stranded DNA Binding Protein from Salmonella enterica Serovar Typhimurium LT2

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism, such as DNA replication, repair, and recombination, and is essential for cell survival. We characterized the single-stranded DNA (ssDNA)-binding properties of Salmonella enterica serovar Typhimurium LT2 SSB (StSSB) by using fluorescence quenching measurements and electrophoretic mobility shift analysis (EMSA). Analysis of purified StSSB by gel filtration chromatography showed a stable tetramer in solution. In fluorescence titrations, StSSB bound to 21–38 nucleotides (nt) per tetramer depending on the salt concentration. Using EMSA, we characterized the stoichiometry of StSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined to be 22 ± 1 nt. Furthermore, EMSA results indicated that the dissociation constants of StSSB for the first tetramer were less than that for the second tetramer. On the basis of these biophysical analyses, the ssDNA binding-mode of StSSB is expected to be noncooperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ec :

Escherichia coli

St :

Salmonella enterica serovar Typhimurium LT2

Pa :

Pseudomonas aeruginosa PAO1

Mt :

Mycobacterium tuberculosis

Ms :

Mycobacterium smegmatis

Hp :

Helicobacter pylori

ssDNA:

Single-stranded DNA

SSB:

Single-stranded DNA-binding protein

SDS-PAGE:

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

EDTA:

Ethylenediamine tetraacetic acid

EMSA:

Electrophoretic mobility shift analysis

nt:

Nucleotides

K d :

The apparent dissociation constant

References

  1. Chan KW, Lee YJ, Wang CH, Huang H, Sun YJ (2009) J Mol Biol 388:508–519

    Article  CAS  Google Scholar 

  2. Chen CC, Huang CY (2011) Protein J. doi:10.1007/s10930-010-9302-0

  3. Curth U, Genschel J, Urbanke C, Greipel J (1996) Nucleic Acids Res 24:2706–2711

    Article  CAS  Google Scholar 

  4. Curth U, Greipel J, Urbanke C, Maass G (1993) Biochemistry 32:2585–2591

    Article  CAS  Google Scholar 

  5. Dabrowski S, Olszewski M, Piatek R, Brillowska-Dabrowska A, Konopa G, Kur J (2002) Microbiology 148:3307–3315

    CAS  Google Scholar 

  6. Fairall L, Buttinelli M, Panetta G (2000) Bandshift, gel retardation or electrophoretic mobility shift assays. In: Travers A, Buckle M (eds) DNA-protein interactions: a practical approach. Oxford University Press, New York, pp 65–74

    Google Scholar 

  7. Fedorov R, Witte G, Urbanke C, Manstein DJ, Curth U (2006) Nucleic Acids Res 34:6708–6717

    Article  CAS  Google Scholar 

  8. Haseltine CA, Kowalczykowski SC (2002) Mol Microbiol 43:1505–1515

    Article  CAS  Google Scholar 

  9. Hsieh HC, Huang CY (2011) Biochem Biophys Res Commun 404:546–551

    Article  CAS  Google Scholar 

  10. Huang CY, Chang YW, Chen WT (2008) Biochem Biophys Res Commun 375:220–224

    Article  CAS  Google Scholar 

  11. Huang CY, Hsu CH, Sun YJ, Wu HN, Hsiao CD (2006) Nucleic Acids Res 34:3878–3886

    Article  CAS  Google Scholar 

  12. Jan HC, Lee YL, Huang CY (2011) Protein J doi:10.1007/s10930-010-9297-6

  13. Kerr ID, Wadsworth RI, Cubeddu L, Blankenfeldt W, Naismith JH, White MF (2003) EMBO J 22:2561–2570

    Article  CAS  Google Scholar 

  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  15. Liu JH, Chang TW, Huang CY, Chen SU, Wu HN, Chang MC, Hsiao CD (2004) J Biol Chem 279:50465–50471

    Article  CAS  Google Scholar 

  16. Lohman TM, Ferrari ME (1994) Annu Rev Biochem 63:527–570

    CAS  Google Scholar 

  17. Madden TL, Tatusov RL, Zhang J (1996) Methods Enzymol 266:131–141

    Article  CAS  Google Scholar 

  18. Matos RG, Barbas A, Arraiano CM (2010) Protein J 29:394–397

    Article  CAS  Google Scholar 

  19. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK (2001) Nature 413:852–856

    Article  CAS  Google Scholar 

  20. Meltzer E, Schwartz E (2010) Curr Opin Infect Dis 23:432–437

    Article  Google Scholar 

  21. Murzin AG (1993) EMBO J 12:861–867

    CAS  Google Scholar 

  22. Naue N, Fedorov R, Pich A, Manstein DJ, Curth U (2010) Nucleic Acids Res. doi:10.1093/nar/gkq988

  23. Oakley GG, Patrick SM (2010) Front Biosci 15:883–900

    Article  CAS  Google Scholar 

  24. Olszewski M, Grot A, Wojciechowski M, Nowak M, Mickiewicz M, Kur J (2010) BMC Microbiol 10:260

    Article  Google Scholar 

  25. Olszewski M, Mickiewicz M, Kur J (2008) Arch Microbiol 190:79–87

    Article  CAS  Google Scholar 

  26. Raghunathan S, Kozlov AG, Lohman TM, Waksman G (2000) Nat Struct Biol 7:648–652

    Article  CAS  Google Scholar 

  27. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Science 328:498–501

    Article  CAS  Google Scholar 

  28. Roy R, Kozlov AG, Lohman TM, Ha T (2007) J Mol Biol 369:1244–1257

    Article  CAS  Google Scholar 

  29. Roy R, Kozlov AG, Lohman TM, Ha T (2009) Nature 461:1092–1097

    Article  CAS  Google Scholar 

  30. Saikrishnan K, Jeyakanthan J, Venkatesh J, Acharya N, Sekar K, Varshney U, Vijayan M (2003) J Mol Biol 331:385–393

    Article  CAS  Google Scholar 

  31. Saikrishnan K, Manjunath GP, Singh P, Jeyakanthan J, Dauter Z, Sekar K, Muniyappa K, Vijayan M (2005) Acta Crystallogr D Biol Crystallogr 61:1140–1148

    Article  CAS  Google Scholar 

  32. Savvides SN, Raghunathan S, Futterer K, Kozlov AG, Lohman TM, Waksman G (2004) Protein Sci 13:1942–1947

    Article  CAS  Google Scholar 

  33. Schwarz G, Watanabe F (1983) J Mol Biol 163:467–484

    Article  CAS  Google Scholar 

  34. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) Crit Rev Biochem Mol Biol 43:289–318

    Article  CAS  Google Scholar 

  35. Tischler AD, McKinney JD (2010) Curr Opin Microbiol 13:93–99

    Article  CAS  Google Scholar 

  36. Tsolis RM, Young GM, Solnick JV, Baumler AJ (2008) Nat Rev Microbiol 6:883–892

    Article  CAS  Google Scholar 

  37. Wadsworth RI, White MF (2001) Nucleic Acids Res 29:914–920

    Article  CAS  Google Scholar 

  38. Wang CC, Tsau HW, Chen WT, Huang CY (2010) Protein J 29:445–452

    Article  CAS  Google Scholar 

  39. Witte G, Fedorov R, Curth U (2008) Biophys J 94:2269–2279

    Article  CAS  Google Scholar 

  40. Witte G, Urbanke C, Curth U (2003) Nucleic Acids Res 31:4434–4440

    Article  CAS  Google Scholar 

  41. Witte G, Urbanke C, Curth U (2005) Nucleic Acids Res 33:1662–1670

    Article  CAS  Google Scholar 

  42. Wold MS (1997) Annu Rev Biochem 66:61–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hui-Chuan Hsieh for constructing the pET21b-StSSB. This research was supported a grant from the National Research Program for Genome Medicine (NSC 99-3112-B-040-001 to C.Y. Huang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Yang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Lee, YL. & Huang, CY. Characterization of a Single-Stranded DNA Binding Protein from Salmonella enterica Serovar Typhimurium LT2. Protein J 30, 102–108 (2011). https://doi.org/10.1007/s10930-011-9309-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9309-1

Keywords

Navigation