Skip to main content
Log in

Acid-Induced Formation of Molten Globule States in the Wild Type Escherichia coli 5-Enolpyruvylshikimate 3-Phosphate Synthase and its Three Mutated Forms: G96A, A183T and G96A/A183T

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Recent advances in protein chemistry have led to progress in the understanding of protein folding and properties of possible intermediates during the folding of proteins. The molten globule (MG) state, a major intermediate of protein folding, has a denatured state with native-like secondary structure. In the present work, the acid-induced unfolding of wild type Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) and its three different variants (G96A, A183T and G96A/A183T) were studied by far- and near-UV circular dichroism (CD), intrinsic fluorescent emission spectroscopy and 1-anilino naphthalene-8-sulfonate (ANS) binding. At pH < 3.0, these EPSPS variants acquire partially folded state, which show the characteristics of the MG state, e.g., a drastic reduction of defined tertiary structure and almost no change in the secondary structure. ANS binding experiments show that hydrophobic surface of these variants is exposed to a greater extent in comparison to the native form, at acidic pH. Wild type, G96A, A183T and G96A/A183T acquire MG states at pH 2.0, 1.5, 3.0 and 3.0, respectively, which show that pH stability of MG state of G96A has increased in comparison to wild type; and pH stability of MG states of two other mutants is lower than that of the wild type. The results suggest that there is a direct relationship between stability of protein and pH stability of its folding intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MG:

Molten globule

EPSPS:

5-enolpyruvylshikimate 3-phosphate synthase

CD:

Circular dichroism

ANS:

1-anilino naphthalene-8-sulfonate

DTT:

Dithiothreitol

S3P:

Shikimate 3-phosphate

MRW:

Mean amino acid residue weight

Gdn-HCl:

Guanidine hydrochloride

References

  1. Asghari SM, Khajeh K, Moradian F, Ranjbar B, Naderi-Manesh H (2004) Enzyme Microb Tech 57:35–51

    Google Scholar 

  2. Bentley R (1990) Crit Rev Biochem Mol Biol 25:307–383

    Article  CAS  Google Scholar 

  3. Bradford MM (1976) Biochem 72:248–254

    CAS  Google Scholar 

  4. Chowdhury FA, Raleigh DP (2005) Protein Sci 14:89–96

    Article  CAS  Google Scholar 

  5. D’Amico S, Marx JC, Gerday C, Feller G (2003) J Biol Chem 278:7891–7896

    Article  Google Scholar 

  6. Eichholtz DA, Alan D, Gasser CS, Scott C, Kishore GM, Murthy G (2001) United States Patent No 6:114–225

    Google Scholar 

  7. Eschenburg S, Healy ML, Priestman MA, Lushington GH, Schönbrunn E (2002) Planta 216:129–135

    Article  CAS  Google Scholar 

  8. Fitter J, Haber-Pohlmeier S (2004) Biochemistry 43:9589–9599

    Article  CAS  Google Scholar 

  9. Goto Y, Takahashi N, Fink A (1990) Biochemistry 29:3480–3488

    Article  CAS  Google Scholar 

  10. Goto Y, Fink AL (1989) Biochemistry 28:945–952

    Article  CAS  Google Scholar 

  11. Haghani K, Salmanian AH, Ranjbar B, Zakikhan-Alang K, Khajeh K (2008) Biochim Biophys Acta 1784:1167–1175

    CAS  Google Scholar 

  12. Jagtap S, Rao M (2009) J Fluoresc 6:967–973

    Article  Google Scholar 

  13. Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Plant Cell Rep 26:95–104

    Article  CAS  Google Scholar 

  14. Kuwajima K (1989) Proteins 6:87–103

    Article  CAS  Google Scholar 

  15. Lakowicz JR (1983) In principles of fluorescence spectreoscopy. Plenum, New York, pp 1991–2007

    Google Scholar 

  16. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) Anal Biochem 100:95–97

    Article  CAS  Google Scholar 

  17. Monsef Shokri M, Khajeh K, Alikhajeh J, Asoodeh A, Ranjbar B, Hosseinkhani S, Sadeghi M (2006) Biophys Chemistry 65:122–158

    Google Scholar 

  18. Nam GH, Choi KY (2002) Eur J Biochem 269:5280–5287

    Article  CAS  Google Scholar 

  19. Protasevich I, Ranjbar B, Lobachov V, Markov A, Gilli D, Briand D, Lafitte J, Haiech R (1997) Biochemistry 36:2017–2024

    Article  CAS  Google Scholar 

  20. Ptitsyn OB (1995) Adv Protein Chem 47:83–229

    Article  CAS  Google Scholar 

  21. Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W (2001) Proc Natl Acad Sci USA 98:1376–1380

    Article  CAS  Google Scholar 

  22. Steinrucken HC, Amrhein N (1980) Biochem Biophys Res Commun 94:1207–1212

    Article  CAS  Google Scholar 

  23. Vieille C, Zeikus G (2001) Microbiol Mol Biol Rev 65:1–43

    Article  CAS  Google Scholar 

  24. Wang HY, Li YF, Xie LX, Xu P (2003) J Plant Res 116:455–460

    Article  CAS  Google Scholar 

  25. Weiss U, Mingioli ES (1956) J Biol Chem 78:2894–2898

    CAS  Google Scholar 

  26. Xie Q, Guo T, Lu J, Zhou HM (2004) Int J Biochem Cell Biol 36:296–306

    Article  CAS  Google Scholar 

  27. Yang JT, Wu C, Martinez HM (1986) Methods Enzymol 130:208–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghani, K., Khajeh, K., Salmanian, A.H. et al. Acid-Induced Formation of Molten Globule States in the Wild Type Escherichia coli 5-Enolpyruvylshikimate 3-Phosphate Synthase and its Three Mutated Forms: G96A, A183T and G96A/A183T. Protein J 30, 132–137 (2011). https://doi.org/10.1007/s10930-011-9308-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9308-2

Keywords

Navigation