Skip to main content
Log in

Inhibition of Klebsiella Pneumoniae DnaB Helicase by the Flavonol Galangin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is a ubiquitous opportunistic pathogen that colonizes at the mucosal surfaces in humans and causes severe diseases. Many clinical strains of K. pneumoniae are highly resistant to antibiotics. Here, we used fluorescence quenching to show that the flavonols galangin, myricetin, quercetin, and kaempferol, bearing different numbers of hydroxyl substituent on the aromatic rings, may inhibit dNTP binding of the primary replicative DnaB helicase of K. pneumoniae (KpDnaB), an essential component of the cellular replication machinery critical for bacterial survival. The binding affinity of KpDnaB to dNTPs varies in the following order: dCTP ~ dGTP > dTTP > dATP. Addition of 10 μM galangin significantly decreased the binding ability of KpDnaB to dATP, whereas the binding affinity of KpDnaB to dGTP that was almost unaffected. Our analyses suggest that these flavonol compounds may be used in the development of new antibiotics that target K. pneumoniae and other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Kp :

Klebsiella pneumoniae

K d :

The dissociation constant

dsDNA:

Double-stranded DNA

ssDNA:

Single-stranded DNA

Myr:

Myricetin

Que:

Quercetin

Kae:

Kaempferol

Gal:

Galangin

References

  1. Baker TA, Bell SP (1998) Cell 92:295–305

    Article  CAS  Google Scholar 

  2. Black MT, Coleman K (2009) Curr Opin Investig Drugs 10:804–810

    CAS  Google Scholar 

  3. Burda S, Oleszek W (2001) J Agric Food Chem 49:2774–2779

    Article  CAS  Google Scholar 

  4. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) Nucleic Acids Res 33:D325–D328

    Article  CAS  Google Scholar 

  5. Cushnie TP, Lamb AJ (2005) Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  6. Griep MA, Blood S, Larson MA, Koepsell SA, Hinrichs SH (2007) Bioorg Med Chem 15:7203–7208

    Article  CAS  Google Scholar 

  7. Gupta A, Ampofo K, Rubenstein D, Saiman L (2003) J Perinatol 23:439–443

    Article  Google Scholar 

  8. Heller RC, Marians KJ (2006) Nat Rev Mol Cell Biol 7:932–943

    Article  CAS  Google Scholar 

  9. Hopkins KL, Davies RH, Threlfall EJ (2005) Int J Antimicrob Agents 25:358–373

    Article  CAS  Google Scholar 

  10. Huang CY, Hsu CH, Sun YJ, Wu HN, Hsiao CD (2006) Nucleic Acids Res 34:3878–3886

    Article  CAS  Google Scholar 

  11. Jezewska MJ, Bujalowski W (1996) J Biol Chem 271:4261–4265

    Article  CAS  Google Scholar 

  12. Jezewska MJ, Kim US, Bujalowski W (1996) Biophys J 71:2075–2086

    Article  CAS  Google Scholar 

  13. Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD (2009) Nucleic Acids Res 37:804–814

    Article  CAS  Google Scholar 

  14. Lohman TM, Bjornson KP (1996) Annu Rev Biochem 65:169–214

    Article  CAS  Google Scholar 

  15. McGlynn P, Lloyd RG (2002) Nat Rev Mol Cell Biol 3:859–870

    Article  CAS  Google Scholar 

  16. Mott ML, Berger JM (2007) Nat Rev Microbiol 5:343–354

    Article  CAS  Google Scholar 

  17. Podschun R, Ullmann U (1998) Clin Microbiol Rev 11:589–603

    CAS  Google Scholar 

  18. Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Science 328:498–501

    Article  CAS  Google Scholar 

  19. Ross JA, Kasum CM (2002) Annu Rev Nutr 22:19–34

    Article  CAS  Google Scholar 

  20. Roychowdhury A, Szymanski MR, Jezewska MJ, Bujalowski W (2009) Biochemistry 48:6730–6746

    Article  CAS  Google Scholar 

  21. Singleton MR, Dillingham MS, Wigley DB (2007) Annu Rev Biochem 76:23–50

    Article  CAS  Google Scholar 

  22. Soultanas P (2005) Structure 13:839–844

    Article  CAS  Google Scholar 

  23. Teillet F, Boumendjel A, Boutonnat J, Ronot X (2008) Med Res Rev 28:715–745

    Article  CAS  Google Scholar 

  24. Wang CC, Tsau HW, Chen WT, Huang CY (2010) Protein J 29:445–452

    Article  CAS  Google Scholar 

  25. West SC (1996) Cell 86:177–180

    Article  CAS  Google Scholar 

  26. Wolfe KL, Liu RH (2008) J Agric Food Chem 56:8404–8411

    Article  CAS  Google Scholar 

  27. Wu HJ, Wang AH, Jennings MP (2008) Curr Opin Chem Biol 12:93–101

    Article  CAS  Google Scholar 

  28. Xu H, Ziegelin G, Schroder W, Frank J, Ayora S, Alonso JC, Lanka E, Saenger W (2001) Nucleic Acids Res 29:5058–5066

    Article  CAS  Google Scholar 

  29. Yang J, Chen L, Sun L, Yu J, Jin Q (2008) Nucleic Acids Res 36:D539–D542

    Article  CAS  Google Scholar 

  30. Yu WL, Chuang YC, Walther-Rasmussen J (2006) J Microbiol Immunol Infect 39:264–277

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shun-Chuan Yang for constructing the pET21e-KpDnaB plasmid. This research was supported a grant from the National Research Program for Genome Medicine (NSC 99-3112-B-040-001 to C.Y. Huang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Yang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Huang, CY. Inhibition of Klebsiella Pneumoniae DnaB Helicase by the Flavonol Galangin. Protein J 30, 59–65 (2011). https://doi.org/10.1007/s10930-010-9302-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9302-0

Keywords

Navigation