Skip to main content
Log in

Oxidized NADH Oxidase Inhibits Activity of an ATP/NAD Kinase from a Thermophilic Archaeon

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

NADH oxidases (NOXs) are important enzymes in detoxifying oxidative stress and regenerating oxidized pyridine nucleotides. In the present study, a NOX from Thermococcus kodakarensis KOD1 (NOXtk) was recombinantly expressed in Escherichia coli and purified to homogeneity. NOXtk displayed NADH oxidase activity that was inhibited by oxidization. Under physiological conditions, unoxidized and oxidized NOXtk formed dimers and hexamers, respectively. Mutating the single cysteine residue Cys45 to alanine (NOXtkC45A) decreased NADH oxidase activity without affecting dimerization or hexamerization, suggesting that oligomerization does not occur through disulfide bond formation. Pull-down assay results indicated that an ATP/NAD kinase from T. kodakarensis KOD1 (ANKtk) binds to NOXtk. Use of several assays revealed that ANKtk can only bind to oxidized hexameric NOXtk, through which it inhibits ANKtk activity. Because ANKtk converts NADH to NADPH (an important factor in oxidative stress protection), a model based on in vitro result was proposed in which NOXtk hexamerization under oxic conditions inhibits both NOXtk and ANKtk activities, thereby sensitizing cells to oxidative stress-induced death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NOX:

NADH oxidase

ANK:

ATP/NAD kinase

native-PAGE:

Native polyacrylamide gel electrophoresis

CBB:

Coomassie Brilliant Blue

PVDF:

Poly(vinylidene difluoride)

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Archaea 1:263–267

    Article  CAS  Google Scholar 

  2. Banci L, Bertini I, Durazo A, Girotto S, Gralla EB, Martinelli M, Valentine JS, Vieru M, Whitelegge JP (2007) Proc Natl Acad Sci USA 104:11263–11267

    Article  CAS  Google Scholar 

  3. Bieganowski P, Seidle HF, Wojcik M, Brenner C (2006) J Biol Chem 281:22439–22445

    Article  CAS  Google Scholar 

  4. Caryn EO, Valeria CC (2008) EMBO J 22:2015–2024

    Google Scholar 

  5. Christopher MS, Dana HB, Eric JR (2008) Mol Microbiol 48:77–84

    Google Scholar 

  6. Dennis RH, Donald EW, Jeremy MF, Kyle ML, Ryan D, Murphy TCM, Edward JCI (2005) FEBS J 272:1189–1200

    Article  Google Scholar 

  7. Donald EW, Christopher JD, Michael EM, John VDO, Willem MV, Edward JCI (2001) Eur J Biochem 268:5816–5823

    Article  Google Scholar 

  8. Dym O, Eisenberg D (2001) Protein Sci 10:1712–1728

    Article  CAS  Google Scholar 

  9. Giulio M, Giuseppe O, Nadia R (2006) Mini Rev Med Chem 6:739–746

    Article  Google Scholar 

  10. Grose JH, Joss L, Velick SF, Roth JR (2006) Proc Natl Acad Sci USA 103:7601–7606

    Article  CAS  Google Scholar 

  11. Jia B, Lee S, Pham BP, Cho Y, Yang J, Byeon H, Kim JC, Cheong G (2010) Mol Cells 29:1016–8478

    Article  Google Scholar 

  12. Jia B, Park S, Lee S, Pham BP, Yu R, Le TL, Han S, Yang J, Choi M, Baumeister W, Cheong G (2008) FEBS J 275:5355–5366

    Article  CAS  Google Scholar 

  13. Kawai S, Fukuda C, Mukai T, Murata K (2005) J Biol Chem 280:39200–39207

    Article  CAS  Google Scholar 

  14. Kawai S, Mori S, Mukai T, Matsukawa H, Matuo Y, Murata K (2001) J Biosci Bioeng 92:447–452

    Article  CAS  Google Scholar 

  15. Kawasaki S, Ishikura J, Chiba D, Nishino T, Niimura Y (2004) Arch Microbiol 181:324–330

    Article  CAS  Google Scholar 

  16. Kengen SWM, van der Oost J, Vos WM (2003) Eur J Biochem 270:2885–2894

    Article  CAS  Google Scholar 

  17. Labesse G, Douguet D, Assairi L, Gilles AM (2002) Trend Biochem Sci 27:273–275

    Article  CAS  Google Scholar 

  18. Lerner F, Niere M, Ludwig A, Ziegler M (2001) Biochem Biophys Res Comm 288:69–74

    Article  CAS  Google Scholar 

  19. Liu J, Lou Y, Yokota H, Adams PD, Kim R, Kim SH (2005) J Mol Biol 354:289–303

    Article  CAS  Google Scholar 

  20. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Trend Cell Biol 16:264–272

    Article  CAS  Google Scholar 

  21. Niimura Y, Nishiyam Y, Saito D, Tsuji H, Hidaka M, Miyaji T, Watanabe T, Massey V (2000) J Bacteriol 182:5046–5051

    Article  CAS  Google Scholar 

  22. Pollak N, Niere M, Ziegler M (2007) J Biol Chem 282:33562–33571

    Article  CAS  Google Scholar 

  23. Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, Magni G (2004) Biochemistry 43:7610–7617

    Article  CAS  Google Scholar 

  24. Sakuraba H, Kawakami R, Ohshima T (2005) Appl Environ Microbiol 71:4352–4358

    Article  CAS  Google Scholar 

  25. Shianna KV, Marchuk DA, Strand MK (2006) Mitochondrion 6:99–106

    Google Scholar 

  26. Shigeyuki K, Kousaku M (2008) Biosci Biotechnol Biochem 72:919–930

    Article  Google Scholar 

  27. Shigeyuki K, Shigetarou M, Takako M, Wataru H, Kousaku M (2001) Eur J Biochem 268:4359–4365

    Article  Google Scholar 

  28. Wu Y, Li Q, Chen XZ (2007) Nat Protocols 2:3278–3284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Won Cheong.

Additional information

B. Jia and S. Lee contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, B., Lee, S., Pham, B.P. et al. Oxidized NADH Oxidase Inhibits Activity of an ATP/NAD Kinase from a Thermophilic Archaeon. Protein J 29, 609–616 (2010). https://doi.org/10.1007/s10930-010-9284-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9284-y

Keywords

Navigation