Skip to main content
Log in

Designing a Highly Efficient Chemical Chaperone System Using Chitosan-Coated Alginate

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In the present work we prepared chitosan-coated alginate beads, to use as a chemical chaperone based on the electrostatic interaction between the carboxylate groups of alginate and the ammonium groups of chitosan. This procedure was an attempt for designing a highly efficient chemical chaperone to improve protein stability and refolding. Based on enzyme recovered activity, turbidity, far-UV CD and fluorescence data, alkaline phosphatase can be stabilized and refolded to a higher degree in the presence of alginate capsules compared with unassisted form and was further improved by including chitosan. Finally the maximum yield was obtained when the refolding process was achieved under a well worked out temperature program: incubation of the captured-enzyme for 20 min at 4 °C followed by overnight incubation at 22 °C, which showed that aggregation is a major limitation to refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BSA:

Bovine serum albumin

pNPP:

p-nitrophenyl phosphate

References

  1. Agashe VR, Hartl FU (2000) Semin Cell Dev Biol 11:15–25

    Article  CAS  Google Scholar 

  2. Andi B, West AH, Cook P (2004) Arch Biochem Biophys 421:243–254

    Article  CAS  Google Scholar 

  3. Betts SD, King J (1998) Protein Sci 7:1516–1523

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  5. Chen MJ, Chen KN, Kuo YT (2007) Biotechnol Bioeng 98(2):411–419

    Article  CAS  Google Scholar 

  6. Daly MM, Knorr D (1988) Biotech Prog 4:76–81

    Article  CAS  Google Scholar 

  7. Dong XY, Shi JH, Sun Y (2002) Biotechnol Prog 18:11–19

    Article  Google Scholar 

  8. Eftekharzadeh B, Khodagholi F, Abdi A, Maghsoudi N (2010) Carbohydr Polym 79:1063–1072

    Article  CAS  Google Scholar 

  9. Fernández M, Villalonga ML, Caballero J, Fragoso A, Cao R, Villalonga R (2003) Biotechnol Bioeng 83(6):743–747

    Article  Google Scholar 

  10. Fink AL (1999) Physiol Rev 79:425–449

    CAS  Google Scholar 

  11. Fosset M, Chappelet-Tordo D, Lazdunski M (1974) Biochemistry 13:1783–1788

    Article  CAS  Google Scholar 

  12. Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Biomaterials 20:1427–1435

    Article  CAS  Google Scholar 

  13. Garen A, Levinthal C (1960) Biophys Acta 38:470–483

    Article  CAS  Google Scholar 

  14. Gombotz WR, Wee SF (1998) Adv Drug Delivery Rev 31:267–285

    Article  CAS  Google Scholar 

  15. Guex N, Peitsch MC (1997) Elecrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  16. Haase-Pettingell C, King J (1988) J Biol Chem 263:4977–4983

    CAS  Google Scholar 

  17. Hoffman AS (2001) Ann NY Acad Sci 944:62–73

    CAS  Google Scholar 

  18. Khodagholi F, Yazdanparast R (2005) Protein J 24:303–313

    Article  CAS  Google Scholar 

  19. Khodagholi F, Eftekharzadeh B, Yazdanparast R (2008) Protein J 27:1–6

    Article  CAS  Google Scholar 

  20. Koepsell HJ, Tsuchiya HM (1952) J Bacteriol 63:293–295

    CAS  Google Scholar 

  21. Kumar R. Siva Sai, Vishwanath KS, Singh SA, Appu Rao AG (2006) Process Biochem 41(11):2282–2288

  22. Li XY, Jin LJ, McAllicter TA, Stanford K, Xu JY, Lu YN, Zhen YH, Sun YX, Xu YP (2007) J Agric Food Chem 55:2911–2917

    Article  CAS  Google Scholar 

  23. Mondal K, Bohidar HB, Roy RP, Gupta MN (2006) Biochim Biophys Acta 1764:877–886

    CAS  Google Scholar 

  24. Mukhopadhyay A (1997) Adv Biochem Eng Biotechnol 56:106–109

    Google Scholar 

  25. Poncelet D, Poncelet de Smet B, Beaulieu C, Neufeld RJ (1992) In: Goosen MF (ed) Fundamentals of animal cell encapsulation and immobilization. CRC press, Boca Raton

    Google Scholar 

  26. Rezaii N, Khodagholi F (2009) Protein J 28:124–130

    Article  CAS  Google Scholar 

  27. Sattarahmady N, Khodagholi F, Moosavi-Movahedi AA, Heli H, Hakimelahi GH (2007) Int J Biol Macromol 41:180–184

    Article  CAS  Google Scholar 

  28. Shamala TR, Prasad MS (1995) Biochemistry 30:237–241

    Google Scholar 

  29. Silva CM, Ribeiro AJ, Figueiredo IV, Gonçalves AR, Veiga F (2006) Int J Pharm 311:1–10

    Article  CAS  Google Scholar 

  30. Wang J, Lu D, Lin Y, Zh Liu (2005) Biochem Chem 24:269–277

    CAS  Google Scholar 

  31. Xie Y, Wetlaufer DB (1996) Protein Sci 5:517–523

    CAS  Google Scholar 

  32. Zohar-Perez C, Chet I, Nussinovitch A (2004) Food Hydrocoll 18:249–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the research council of the Shahid Beheshti University of Medical Sciences for the financial support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Khodagholi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodagholi, F., Farahmand, S. & Tusi, S.K. Designing a Highly Efficient Chemical Chaperone System Using Chitosan-Coated Alginate. Protein J 29, 343–349 (2010). https://doi.org/10.1007/s10930-010-9258-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9258-0

Keywords

Navigation