Skip to main content

Advertisement

Log in

Inhibition of Botulinum Neurotoxin A Toxic Action In Vivo by Synthetic Synaptosome- and Blocking Antibody-Binding Regions

  • Published:
The Protein Journal Aims and scope Submit manuscript

An Erratum to this article was published on 13 August 2010

Abstract

In previous studies, we showed that certain peptides of the HN and HC domains of the H-chain of BoNT/A bind to mouse brain synaptosomes (snps). There was either complete correspondence or overlap between peptides that bind snps and those that bind human or mouse blocking antibodies (Abs). An equimolar mixture of the overlapping peptides N5/N6/N7/N8 (residues 505–523/519–537/533–551/547–565) extended the survival time of the mice to 74 h (20%) relative to controls, which had a 50% survival time of 60 h. On the other hand, peptide N26 (residues 799–817) provided no protection (50% survival time, 58 h), but the overlapping peptide N25 (785–803) almost doubled the 50% survival time to 119 h. A mixture of the overlap N25/N26 provided an unexpected level of protection permitting 40% of the mice to survive a lethal BoNT/A dose. In the HC domain, the overlap C23/C24 (1163–1181/1177–1195) provided no protection. Peptide C31 (1275–1296) also provided no significant protection. But an equimolar mixture of peptides C15/C16 (1051–1069/1065–1083) or peptides C18/C19/C20 (1093–1111/1107–1125/1121–1139) extended the 50% survival time by 41% (to 85 h) over controls (60 h) and was able to fully protect 20% of the mice which eventually recovered. Surprisingly, the mixture of the peptides C15/C16 and C18/C19/C20, which gave a 50% survival time of 75 h, was less protective than either peptides C15/C16 or peptides C18/C19/C20. The in vivo inhibitory activity of these peptides is discussed in relation to their location in the 3-dimensional structure of the toxin molecule and their membrane receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ab:

Antibody

BoNT/A:

Botulinum neurotoxin serotype A

BSA:

Bovine serum albumin

H-chain:

The heavy chain (residues 449–1296) of BoNT/A; peptide numbers preceded by C indicate C-terminal domain, (HC; residues 855–1296) peptides of BoNT/A; peptides denoted by N indicate N-terminal domain, (HN; residues 449–859) peptides of the H-chain of BoNT/A

MPA:

Mouse protection assay

PBS:

0.15 M NaCl in 0.01 M sodium phosphate buffer, pH 7.20

snp:

Synaptosome

References

  1. Agui T, Syuto B, Oguma K, lida H, Kubo S (1983) J Biochem 94:521–527

    CAS  Google Scholar 

  2. Aoki KR, Smith LA, Atassi MZ (2010) Crit Rev Immunol 30:167–187

    CAS  Google Scholar 

  3. Arribas M, Blasi J, Egea G, Farinas I, Solsona C, Marsal J (1993) J Neurosci Res 36:635–645

    Article  CAS  Google Scholar 

  4. Atassi MZ (1975) Immunochemistry 12:423–438

    Article  CAS  Google Scholar 

  5. Atassi MZ (1984) Eur J Biochem 145:1–20

    Article  CAS  Google Scholar 

  6. Atassi MZ (2004) Mov Disord 8:S68–S84

    Article  Google Scholar 

  7. Atassi MZ, Dolimbek BZ (2004) Protein J 23:39–52

    Article  CAS  Google Scholar 

  8. Atassi MZ, Dolimbek BZ, Hayakari M, Middlebrook JL, Whitney B, Oshima M (1996) J Prot Chem 15:691–700

    Article  CAS  Google Scholar 

  9. Atassi MZ, Dolimbek BZ, Steward LE, Aoki KR (2007) Crit Rev Immunol 27:319–341

    CAS  Google Scholar 

  10. Bandyopadhyay S, Clark AW, Das Gupta B, Sathyamoorthy V (1987) J Biol Chem 262:2660–2663

    CAS  Google Scholar 

  11. Binz T, Rummel A (2009) J Neurochem 109:1584–1595

    Article  CAS  Google Scholar 

  12. Black JD, Dolly JO (1986) J Cell Biol 103:535–544

    Article  CAS  Google Scholar 

  13. Brunger AT, Jin R, Breidenbach MA (2008) Cell Mol Life Sci 65:2296–2306

    Article  CAS  Google Scholar 

  14. Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Nature 444:1096–1100

    Article  CAS  Google Scholar 

  15. Das Gupta BR, Sugiyama HA (1972) Biochem Biophys Res Commun 48:108–112

    Article  CAS  Google Scholar 

  16. Dickson EC, Shevky R (1923) J Exp Med 37:327–346

    Article  Google Scholar 

  17. Dickson EC, Shevky R (1923) J Exp Med 37:711–731

    Article  CAS  Google Scholar 

  18. Dolimbek GS, Dolimbek BZ, Aoki KR, Atassi MZ (2005) Immunol Invest 34:119–142

    CAS  Google Scholar 

  19. Dolimbek BZ, Aoki KR, Steward LE, Jankovic J, Atassi MZ (2007) Mol Immunol 44:1029–1041. Epub 2 May 2006

    Google Scholar 

  20. Dolimbek BZ, Steward LE, Aoki KR, Atassi MZ (2008) Mol Immunol 45:910–924. Epub 25 Sep 2007

    Google Scholar 

  21. Dolly JO, Williams RS, Black JD, Tse CK, Hambleton P, Melling J (1982) Toxicon 20:141–148

    Article  CAS  Google Scholar 

  22. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) Science 312:592–596

    Article  CAS  Google Scholar 

  23. Fernandez-Salas E, Garay P, Iverson C, Malik SZ, Steward LE, Aoki KR (2006) Neurotox Res 9:221

    Google Scholar 

  24. Fernandez-Salas E, Garay P, Jacky B, Dupuy J, Wang J, Nelson J, Stevens RC, Aoki KR (2008) Toxicon 51(Suppl 1):3

    Google Scholar 

  25. Fu FN, Lomneth RB, Cai S, Singh BR (1998) Biochemistry 37:5267–5278

    Article  CAS  Google Scholar 

  26. Hirokawa N, Kitamura M (1979) J Cell Biol 81:43–49

    Article  CAS  Google Scholar 

  27. Jankovic J (2004) Mov Disord 19(Suppl. 8):S109–S115

    Article  Google Scholar 

  28. Jin R, Rummel A, Binz T, Brunger A (2006) Nature 444:1092–1095

    Article  CAS  Google Scholar 

  29. Kitamura M (1976) Arch Pharmacol 295:171–175

    Article  CAS  Google Scholar 

  30. Kohda T, Kamata Y, Kozaki S (2000) J Vet Med Sci 62:1133–1138

    Article  CAS  Google Scholar 

  31. Kozaki S (1979) Naunyn Schmiedebergs Arch Pharmacol 308:67–70

    Article  CAS  Google Scholar 

  32. Kozaki S, Sakaguchi G (1982) Toxicon 20:841–846

    Article  CAS  Google Scholar 

  33. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Nat Struct Biol 5:898–902

    Article  CAS  Google Scholar 

  34. Lawrence GW, Dolly JO (2002) J Cell Sci 115:2791–2800

    CAS  Google Scholar 

  35. Li L, Singh BR (1999) J Prot Chem 18:89–95

    Article  CAS  Google Scholar 

  36. Li L, Singh BR (2000) Biochemistry 39:6466–6474

    Article  CAS  Google Scholar 

  37. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) FEBS Lett 580:2011–2014

    Article  CAS  Google Scholar 

  38. Maruta T, Dolimbek BZ, Aoki KR, Steward LE, Atassi MZ (2004) Protein J 23:539–552

    Article  CAS  Google Scholar 

  39. Maruta T, Dolimbek BZ, Aoki KR, Atassi MZ (2006) J Neurosci Methods 151:90–96

    Article  CAS  Google Scholar 

  40. Morel N, Israel M, Manaranche R, Mastour-Franchon P (1977) J Cell Biol 75:43–55

    Article  CAS  Google Scholar 

  41. Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) Biochem Biophys Res Commun 380:76–80

    Article  CAS  Google Scholar 

  42. Najib A, Pelliccioni P, Gil C, Aguilera J (1999) J Neurochem 72:1991–1998

    Article  CAS  Google Scholar 

  43. Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) J Biol Chem 269:10498–10503

    CAS  Google Scholar 

  44. Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sekiguchi M, Takahashi M, Kozaki S (1996) Neurosci Lett 208:105–108

    Article  CAS  Google Scholar 

  45. Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S (1996) FEBS Lett 378:253–257

    Article  CAS  Google Scholar 

  46. Rummel A, Mahrhold S, Bigalke H, Binz T (2004) Mol Microbiol 51:631–643

    Article  CAS  Google Scholar 

  47. Schengrund CL, DasGupta BR, Hughes CA, Ringler NJ (1996) J Neurochem 66:2556–2561

    Article  CAS  Google Scholar 

  48. Schiavo G, Rossetto O, Santucci A, DasGupta BR, Montecucco C (1992) J Biol Chem 267:23479–23483

    CAS  Google Scholar 

  49. Simpson LL (1981) Pharmacol Rev 33:155–188

    CAS  Google Scholar 

  50. Simpson LL (1986) Ann Rev Pharmacol Toxicol 26:427–453

    Article  CAS  Google Scholar 

  51. Simpson LL (1989) Peripheral actions of the botulinum toxins. In: Simpson LL (ed) Botulinum neurotoxin and tetanus toxin. Academic Press, New York, pp 153–178

    Google Scholar 

  52. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) PLoS Pathog 4:e1000129

    Article  CAS  Google Scholar 

  53. Veit M (1999) Berl MunchTierarztl Wochenschr 112:186–191

    CAS  Google Scholar 

  54. Walch-Solimena C, Blasi J, Edelmann L, Chapman ER, von Mollard GF, Jahn R (1995) J Cell Biol 128:637–645

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Allergan. The support of the Welch Foundation, due to the award to M.Z.A. of the Robert A. Welch Chair of Chemistry, is gratefully acknowledged. The authors thank Ms Masooma Naqvi for her able technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zouhair Atassi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10930-010-9274-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atassi, M.Z., Dolimbek, B.Z., Steward, L.E. et al. Inhibition of Botulinum Neurotoxin A Toxic Action In Vivo by Synthetic Synaptosome- and Blocking Antibody-Binding Regions. Protein J 29, 320–327 (2010). https://doi.org/10.1007/s10930-010-9255-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9255-3

Keywords

Navigation