Skip to main content
Log in

Chemical Unfolding of Enolase from Saccharomyces cerevisiae Exhibits a Three-State Model

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Enolase is a multifunctional protein that participates in glycolysis and gluconeogenesis and can act as a plasminogen receptor on the cell surface of several organisms, among other functions. Despite its participation in a variety of biological and pathophysiological processes, its stability and folding/unfolding reaction have not been fully explored. In this paper we present, the urea and GdnHCl-induced denaturation of enolase studied by means of fluorescence and circular dichroism spectroscopies. We found that enolase unfolds through a highly reversible pathway, populating a stable intermediate species in a range of experimental conditions. The refolding reaction also exhibits an intermediate state that might have a slightly more compact conformation compared to the unfolding intermediate. The thermodynamic parameters associated with the unfolding reaction are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TRIS:

TRIS(hydroxy-methyl) aminomethane

GdnHCl:

Guanidinium hydrochloride

SCM:

Spectral center of mass

CD:

Circular dichroism

SASA:

Solvent-accessible surface area

References

  1. Adamus G, Amundson D, Seigel GM, Machnicki M (1998) J Autoimmunol 11:671–677

    Article  CAS  Google Scholar 

  2. Adamus G, Aptsiauri N, Guy J, Heckenlively J, Flannery J, Hargrave PA (1996) Clin Immunol Immunopathol 78:120–129

    Article  CAS  Google Scholar 

  3. Akisawa N, Maeda T, Iwasaki S, Onishi S (1997) J Hepatol 26:845–851

    Article  CAS  Google Scholar 

  4. Brewer JM (1969) Arch Biochem Biophys 134:59–66

    Article  CAS  Google Scholar 

  5. Brewer JM, Faini GJ, Wu CA, Goss LP, Carreira LA, Wojcik R (1978) In: Catsim poolas N (ed) Physical aspects of protein interactions. Elsevier, North-Holland, p 57278

    Google Scholar 

  6. Brewer JM, Glover CVC, Holland MJ, Lebioda L (1997) Biochim Biophys Acta 1340:88–96

    CAS  Google Scholar 

  7. Brewer JM, Wampler JE (2001) Inter J Biol Macromol 28:213–218

    Article  CAS  Google Scholar 

  8. Brown CK, Kuhlman PL, Mattingly S, Slates K, Calie PJ, Farrar WW (1998) J Protein Chem 17:855–866

    Article  CAS  Google Scholar 

  9. Doyle SM, Braswell EH, Teschke CM (2000) Biochem 39:11667–11676

    Article  CAS  Google Scholar 

  10. Fraczkiewicz R, Braun W (1998) J Comp Chem 19:319–333

    Article  CAS  Google Scholar 

  11. Gawronski TH, Westhead EW (1969) Biochem 8:4261–4270

    Article  CAS  Google Scholar 

  12. Gitlits VM, Sentry JW, Matthew MLSM, Smith AI, Toh BH (1997) Immunol 92:362–368

    Article  CAS  Google Scholar 

  13. He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, Shima Y, Yamadori T, Suzuki H, Hirashima T, Matsui K, Shiono H, Okumura M, Nishida T, Tachibana I, Norioka N, Norioka S, Kawase I (2007) Cancer Sci 98:1234–1240

    Article  CAS  Google Scholar 

  14. Huang P, Dong A (2003) Spectroscopy 17:453–467

    CAS  Google Scholar 

  15. Kolberg J, Aase A, Bergmann S, Herstad TK, Rødal G, Frank R, Rohde M, Hammerschmidt S (2006) Microbiol 152:1307–1317

    Article  CAS  Google Scholar 

  16. Kornblatt MJ, Al-Ghanim A, Kornblatt JA (1996) Eur J Biochem 236:78–84

    Article  CAS  Google Scholar 

  17. Kornblatt MJ, Lange R, Balny C (2004) Eur J Biochem 271:3897–3904

    Article  CAS  Google Scholar 

  18. Larsen TM, Wedekind JE, Rayment I, Reed GH (1996) Biochem 35:4349–4356

    Article  CAS  Google Scholar 

  19. Lindquist S, Craig EA (1998) Annu Rev Genet 22:631–677

    Article  Google Scholar 

  20. Mallam AL, Jackson SE (2005) J Mol Biol 346:1409–1421

    Article  CAS  Google Scholar 

  21. Miller S, Janin J, Lesk AM, Chothia C (1987) J Mol Biol 196:641–656

    Article  CAS  Google Scholar 

  22. Mixcoha-Hernández E, Moreno-Vargas LM, Rojo-Domínguez A, Benítez-Cardoza CG (2007) Protein J 26:491–498

    Article  CAS  Google Scholar 

  23. Moodie FDL, Leaker B, Cambridge G, Totty NF, Segal AW (1993) Kidney Int 43:675–681

    Article  CAS  Google Scholar 

  24. Myers JK, Pace CN, Scholtz JM (1995) Protein Sci 4:2138–2148

    Article  CAS  Google Scholar 

  25. Najera H, Costas M, Fernandez-Velasco DA (2003) Biochem J 370:785–792

    Article  CAS  Google Scholar 

  26. Orth T, Kellner R, Kiekmann O, Faust J, Meyer Zum Buschenfelde K-H, Mayet W-J (1998) Clin Exp Immunol 112:507–515

    Article  CAS  Google Scholar 

  27. Nozaki Y (1972) Methods Enzymol 26:43–50

    Article  CAS  Google Scholar 

  28. Pace CN (1986) Methods Enzymol 131:266–280

    Article  CAS  Google Scholar 

  29. Pancholi V (2001) Cell Mol Life Sci 58:902–920

    Article  CAS  Google Scholar 

  30. Peterson P, Perheentupa J, Krohn KJE (1996) Clin Diagn Lab Immunol 3:290–294

    CAS  Google Scholar 

  31. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova R, Vyoral D, Zivny R, Vulpe CD (2008) Proteom 8:1744–1749

    Article  CAS  Google Scholar 

  32. Pratesi F, Moscato S, Sabbatini A, Chimenti D, Bombardieri S, Migliorini P (2000) J Rheumatol 27:109–115

    CAS  Google Scholar 

  33. Rattner JB, Martin L, Waisman DM, Johnstone SA, Fritzler MJ (1991) J Immunol 146:2341–2344

    CAS  Google Scholar 

  34. Roozendaal C, Zhao MH, Horst G, Lockwoods CM, Kleibeuker JH, Limburg PC (1998) Clin Exp Immunol 112:10–16

    Article  CAS  Google Scholar 

  35. Rosenberg A, Lumry R (1964) Biochem 3:1055–1061

    Article  CAS  Google Scholar 

  36. Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM (2008) Progress Biophys Mol Bio 98:61–84

    Article  CAS  Google Scholar 

  37. Schurig H, Rutkat K, Rachel R, Jaenicke R (1995) Protein Sci 4:228–236

    Article  CAS  Google Scholar 

  38. Sedoris KC, Thomas SD, Miller DM (2007) Biochem 46:8659–8668

    Article  CAS  Google Scholar 

  39. Tanford C (1970) Advan Protein Chem 24:1–95

    Article  CAS  Google Scholar 

  40. Veronese FM, Schiavon O, Boccù E, Benassi CA, Fontana A (1984) Int J Pept Protein Res 24:557–562

    CAS  Google Scholar 

  41. Vick JE, Gerlt JA (2007) Biochem 18:14589–14597

    Google Scholar 

  42. Vora HK, Shaik FR, Pal-Bhowmick I, Mout R, Jarori GK (2009) Arch Biochem Biophys 485:128–138

    Article  CAS  Google Scholar 

  43. Wang T, Himoe A (1974) J Biol Chem 249:3895–3902

    CAS  Google Scholar 

  44. Warren JR, Gordon JA (1966) J Phys Chem 70:297–300

    Article  CAS  Google Scholar 

  45. Westhead EW (1964) Biochem 3:1062–1068

    Article  CAS  Google Scholar 

  46. Zhao S, Choy BS, Kornblatt MJ (2008) FEBS J 275:97–106

    CAS  Google Scholar 

Download references

Acknowledgments

We are very thankful with Dr. Andrés Hernández Arana for the use of the circular dichroism spectrometer. NCI was supported by a fellowship from CONACyT (204849) and from the Instituto Politécnico Nacional with a PIFI-IPN student grant. This work was supported by grants from TWAS (04-352 RG/BIO/LA), CONACyT (45990), and SIP-IPN (20080356, 20091074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia G. Benítez-Cardoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Miguel, D.S., Romero-Jiménez, J., Reyes-López, C.A. et al. Chemical Unfolding of Enolase from Saccharomyces cerevisiae Exhibits a Three-State Model. Protein J 29, 1–10 (2010). https://doi.org/10.1007/s10930-009-9215-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9215-y

Keywords

Navigation