Abstract
Structural analysis of a cytosolic glutamine synthetase from Camellia sinensis (CsGS) has been conducted employing computational techniques. This was conducted to compare its structural aspects with other known structures of GS. The disordered residues and their distribution in CsGS are in close comparison to earlier reported GS. The 3-D structure of CsGS also showed high degree of similarity with the only known crystal structure of GS from Zea mays. The K m values observed with recombinant CsGS for all the three substrates are higher compared to rice, Arabidopsis, maize and human. This suggests lower affinity of CsGS for substrates. Further, kinetic mechanism of CsGS catalysis was investigated using initial velocity analysis and product inhibition studies. Initial velocity data eliminate the possibility of ping-pong mechanism and favor the random mechanism of catalysis. Through product inhibition studies, ADP was found to be a competitive inhibitor with respect to ATP and noncompetitive inhibitor versus both glutamate and ammonium. While, glutamine and inorganic phosphate were found to be non-competitive inhibitors of ATP, glutamate and ammonia. Taken together, these observations are consistent with a random catalysis mechanism for the CsGS where the binding order of certain substrates is kinetically preferred by the enzyme.
This is a preview of subscription content, access via your institution.





Abbreviations
- A620 :
-
Absorbance at 620Â nm
- ADP:
-
Adenosine diphosphate
- ATP:
-
Adenosine triphosphate
- NH3 :
-
Ammonia
- CsGS:
-
Camellia sinensis glutamine synthetase
- EDTA:
-
Ethylenediaminetetraacetic acid
- GS:
-
Glutamine synthetase
- GOGAT:
-
Glutamine oxoglutarate aminotransferase
- Pi:
-
Inorganic phosphate
- UDP:
-
Uridine diphosphate
- ZmGS:
-
Zea mays glutamine synthetase
References
Almassy RJ, Janson CA, Hamlin R, Xuong N, Eisenberg D (1986) Nature 323:304–309
Anderson MS, Eveland SS, Onishi HR, Pompliano DL (1996) Biochemistry 35:16264–16269
Arnold K, Bordoli L, Kopp J, Schwede T (2006) Bioinformatics 22:95–201
Bernard SM, Møller AL, Dionisio G, Kichey T, Jahn TP, Dubois F, Baudo M, Lopes MS, Tercé-Laforgue T, Foyer CH, Parry MA, Forde BG, Araus JL, Hirel B, Schjoerring JK, Habash DZ (2008) Plant Mol Biol 67:89–105
Bhandari B, Roesler WJ, DeLisio KD, Klemm DJ, Ross NS, Miller RE (1991) J Biol Chem 266:7784–7792
Brekken DL, Phillips MA (1998) J Biol Chem 273:26317–26322
Brugie`re N, Dubois F, Limami A, Lelandais M, Roux Y, Sangwan R, Hirel B (1999) Plant Cell 11:1995–2011
Canovas F, Avila C, Canton FR, Canas R, de la Torre F (2007) J Exp Bot 58:2307–2318
Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M, EspÃn G (1992) Gene 119:1–8
Cooper BF, Rudolph FB (1995) Methods Enzymol 249:188–211
de la Torre F, GarcÃa-Gutiérrez A, Crespillo R, Cantón FR, Avila C, Cánovas FM (2002) Plant Cell Physiol 43:802–809
Dubois F, Brugière N, Sangwan RS, Hirel B (1996) Plant Mol Biol 31:803–817
Eisenberg D, Gill HS, Pfuegl GMU, Rotstein SH (2000) Biochim Biophys Acta 1477:122–145
Emanuele JJ, Jin H, Yanchunas J, Villafranca JJ (1997) Biochemistry 36:7264–7271
Filser DM, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano G, Iaccarino M (1986) J Gen Microbiol 132:2561–2569
Finnemann J, Schjoerring JK (2000) Plant J 24:171–181
Geourjon C, Deléage G (1995) Comp Appl Biosc 11:681–684
Gill HS, Pfluegl GM, Eisenberg D (1999) Acta Crystallogr D Biol Crystallogr 55:865–868
Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) Ann Appl Biol 138:83–89
Hirel B, Gadal P (1980) Plant Physiol 66:619–623
Hirel B, Lea PJ (2001) Ammonia assimilation. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. Springer-Verlag, Berlin, pp 79–99
Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) J Biol Chem 279:16598–16605
Jez JM, Cahoon RE, Chen S (2004) J Biol Chem 279:33463–33470
Joyce BK, Himes RH (1966) J Biol Chem 241:5725–5731
Kamachi K, Yamaya T, Mae T, Ojima K (1991) Plant Physiol 96:411–417
Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F (2005) Plant Cell Physiol 46:964–974
Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) J Mol Biol 375:217–228
Krajewski WW, Jones TA, Mowbray SL (2005) Proc Natl Acad Sci USA 102:10499–10504
Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) Ann Rev Plant Physiol Plant Mol Biol 47:569–593
Liaw SH, Pan C, Eisenberg D (1993) Proc Natl Acad Sci USA 90:4996–5000
Listrom CD, Morizono H, Rajagopal BS, McCann MT, Tuchman M, Allewell NM (1997) Biochem J 328:159–163
Man HM, Boriel R, El-Khatib R, Kirby EG (2005) New Phytol 167:31–39
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce′-Laforgue T, Quillere′ I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Plant Cell 18:3252–3274
Masclaux C, Quillere I, Gallais A, Hirel B (2001) Ann Appl Biol 138:69–81
Meek TD, Villafranca JJ (1980) Biochemistry 19:5513–5519
Meierjohann S, Walter RD, Muller S (2002) Biochem J 363:833–838
Miflin BJ, Lea PJ (1980) In: Miflin BJ (ed) The biochemistry of plants. Academic Press, New York, pp 169–202
Mullins LS, Zawadzke LE, Walsh CT, Raushel FM (1990) J Biol Chem 265:8993–8998
Pellegrini M, GrÖnbech-Jensen N, Kelly JA, Pfuegl GMU, Yeates TO (1997) Protein Struct Funct Genet 29:426–432
Pereira S, Pissara J, Sunkel C, Salema R (1995) Ann Bot 77:429–432
Rana NK, Mohanpuria P, Kumar V, Yadav SK (2009) Mol Biol Rep. doi: 10.1007/s11033-009-9559-6
Rana NK, Mohanpuria P, Yadav SK (2008) Biol Plant 52:361–364
Rana NK, Mohanpuria P, Yadav SK (2008) Mol Biotechnol 39:49–56
Sakakibara H, Shimizu H, Hase T, Yamazaki Y, Takao T, Shimonishi Y, Sugiyama T (1996) J Biol Chem 271:29561–29568
Sakurai N, Hayakawa T, Nakamura T, Yamaya T (1996) Planta 200:306–311
Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York
Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Plant J 42:641–651
Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M (2006) J Biol Chem 281:29287–29296
Usdin KP, Zappe H, Jones DT, Woods DR (1986) Appl Environ Microbiol 52:413–419
Valentine RC, Shapiro BM, Stadtman ER (1968) Biochemistry 7:2143–2152
Viola RE, Cleland WW (1982) Methods Enzymol 87:353–366
Yamashita MM, Almassy RJ, Janson CA, Cascio D, Eisenberg D (1989) J Biol Chem 264:17681–17690
Yao J, Patrone JD, Dotson GD (2009) Biochemistry 48:2799–2806
Acknowledgments
I would like to acknowledge Dr. P. S. Ahuja, Director, IHBT for his continuous support and guidance to conduct this work. The financial assistance from Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), Govt. of India is duly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yadav, S.K. Computational Structural Analysis and Kinetic Studies of a Cytosolic Glutamine Synthetase from Camellia sinensis (L.) O. Kuntze. Protein J 28, 428–434 (2009). https://doi.org/10.1007/s10930-009-9210-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10930-009-9210-3