The Protein Journal

, Volume 28, Issue 3–4, pp 117–123

Interaction of Curcumin and Diacetylcurcumin with the Lipocalin Member β-Lactoglobulin

  • Fakhrossadat Mohammadi
  • Abdol-Khalegh Bordbar
  • Adeleh Divsalar
  • Khosro Mohammadi
  • Ali Akbar Saboury
Article

Abstract

The binding of curcumin (CUR) and diacetylcurcumin (DAC) to bovine beta-lactoglobulin (BLG) genetic variant B was investigated by fluorescence and circular dichroism techniques. The binding parameters including number of substantive binding sites and the binding constants have been evaluated by fluorescence quenching method. The distance (r) between donor (BLG) and acceptor (CUR and DAC) was obtained according to the Förster’s theory of non-radiative energy transfer. The far-UV circular dichroism spectra were used to investigate the possible changes in the secondary structure of BLG in the presence of CUR and DAC and showed that these two ligands change the α-helix and random coil contents of this protein to some extent. The visible circular dichroism spectra indicated that the optical activity during the ligand binding was observed due to the induced-protein chirality. All of the achieved results suggested the important role of the phenolic OH group of CUR in the binding process resulted in more affinity of CUR than DAC for binding to BLG.

Keywords

Curcumin Diacetylcurcumin Bovine β-lactoglobulin Fluorescence Circular dichroism 

Abbreviations

CUR

Curcumin

DAC

Diacetylcurcumin

BLG

Beta-lactoglobulin

CD

Circular dichroism

Asp

Aspartic acid

Ala

Alanine

Gly

Glycine

Val

Valine

HSA

Human serum albumin

BSA

Bovine serum albumin

References

  1. 1.
    Aggarwal BB, Kumar A, Aggarwal MS, Shishodia S (2005) Curcumin derived from turmeric (Curcuma longa): a spice for all seasons. In: Preuss H (ed) Phytopharmaceuticals in cancer chemoprevention. CRC Press, Boca Raton, pp 349–387Google Scholar
  2. 2.
    Araújo CAC, Leon LL (2001) Mem Inst Oswaldo Cruz Rio de Jeneiro 96:723–728Google Scholar
  3. 3.
    Barik A, Mishra B, Kunwar A, Priyadarsini KI (2007) Chem Phys Lett 436:239–243CrossRefGoogle Scholar
  4. 4.
    Barik A, Priyadarsini KI, Mohan H (2003) Photochem Photobiol 77:597–603CrossRefGoogle Scholar
  5. 5.
    Borsari M, Ferrari E, Grandi R, Saladini M (2002) Inorg Chim Acta 328:61–68CrossRefGoogle Scholar
  6. 6.
    Brownlow S, Cabral JHM, Cooper R, Flwoer DR, Yewdall SJ, Polikarpov I, North ACT, Sawyer L (1997) Structure 5:481–495CrossRefGoogle Scholar
  7. 7.
    Busti P, Gatti CA, Delorenzi NJ (1998) Int J Biol Macro 23:143–148CrossRefGoogle Scholar
  8. 8.
    Dufour E, Robert P, Bertrand D, Haertlé T (1994) J Protein Chem 13:143–149CrossRefGoogle Scholar
  9. 9.
    Dufour E, Haertle T (1991) Biochim Biophys Acta 1079:316–320Google Scholar
  10. 10.
    Dufour E, Marden MC, Haertlé T (1990) FEBS Lett 277:223–226CrossRefGoogle Scholar
  11. 11.
    Fugate RD, Song PS (1980) Biochim Biophys Acta 625:28–42Google Scholar
  12. 12.
    Goel A, Kunnumakkara AB, Aggarwal BB (2007) Biochem Pharmacol 17:787–809Google Scholar
  13. 13.
    Govindarajan VS (1980) CRC Crit Rev Food Sci Nutr 12:199–301CrossRefGoogle Scholar
  14. 14.
    Jasim F, Ali F (1989) Microchem J 39:156–159CrossRefGoogle Scholar
  15. 15.
    Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Trends Food Sci Technol 16:533–548CrossRefGoogle Scholar
  16. 16.
    Jiang M, Xie MX, Zheng D, Liu Y, Li XY, Cheng X (2004) J Mol Struct 692:71–80CrossRefGoogle Scholar
  17. 17.
    Kelly SM, Price NC (1997) Biochim Biophys Acta 1338:161–185Google Scholar
  18. 18.
    Kelly SM, Price NC (2000) Curr Protein Pept Sci 1:349–384CrossRefGoogle Scholar
  19. 19.
    Kontopidis G, Holt C, Sawyer L (2002) J. Mol Biol 318:1043–1055CrossRefGoogle Scholar
  20. 20.
    Kontopidis G, Holt C, Sawyer L (2004) J Dairy Sci 87:785–796CrossRefGoogle Scholar
  21. 21.
    Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Biochim Biophys Acta 1760:1513–1520Google Scholar
  22. 22.
    Lakowicz JR, Weber G (1973) Biochemistry 12:4161–4170CrossRefGoogle Scholar
  23. 23.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer academic, New YorkGoogle Scholar
  24. 24.
    Manavalan P, Johnson WCJR (1987) Anal Biochem 167:76–85CrossRefGoogle Scholar
  25. 25.
    Mishra S, Narain U, Mishra R, Misra K (2005) Bioorg Med Chem 13:1477–1486CrossRefGoogle Scholar
  26. 26.
    Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C (2005) J Inorg Biochem 99:2217–2225CrossRefGoogle Scholar
  27. 27.
    Oliveria KMG, Valente-Mesquita VL, Botelho MM, Sawyer L, Ferreira ST, Polikarpov I (2001) Eur J Biochem 268:477–483Google Scholar
  28. 28.
    Pulla Reddy AC, Sudharshan E, Appu Rao AG, Lokesh BR (1999) Lipids 34:1025–1029CrossRefGoogle Scholar
  29. 29.
    Sahoo BK, Ghosh KS, Dasgupta S (2008) Biophys Chem 132:81–88CrossRefGoogle Scholar
  30. 30.
    Sawyer L, Kontopidis G (2000) Biochim Biophys Acta 1482:136–148Google Scholar
  31. 31.
    Sharma RA, Gescher AJ, Steward WP (2005) Eur J Cancer 41:1955–1968CrossRefGoogle Scholar
  32. 32.
    Sreejayan N, Rao MN (1997) J Pharm Pharmacol 49:105–107Google Scholar
  33. 33.
    Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Matsumoto K, Watanabe H (2004) Biol Pharm Bull 27:170–173CrossRefGoogle Scholar
  34. 34.
    Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2006) Life Sci 78:1884–1891CrossRefGoogle Scholar
  35. 35.
    Vajragupta O, Boonchoong P, Berliner LJ (2004) Free Radic Res 38:303–314CrossRefGoogle Scholar
  36. 36.
    Vajragupta O, Boonchoong P, Watanabe H, Tohda M, Kummasud N, Sumanont Y (2003) Free Radic Biol Med 35:1632–1644CrossRefGoogle Scholar
  37. 37.
    Wang F, Yang J, Wu X, Liu S (2005) Spectrochim Acta A Mol Biomol Spectrosc 61:2650–2656CrossRefGoogle Scholar
  38. 38.
    Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK (1997) J Pharm Biomed Anal 15:1867–1876CrossRefGoogle Scholar
  39. 39.
    Ware WR (1962) J Phys Chem 66:455–458CrossRefGoogle Scholar
  40. 40.
    Wu SY, Pérez MD, Puyol P, Sawyer L (1999) J Biol Chem 274:170–174CrossRefGoogle Scholar
  41. 41.
    Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269CrossRefGoogle Scholar
  42. 42.
    Zsila F, Bikádi Z, Simonyi M (2003) Biochem Biophys Res Commun 301:776–782CrossRefGoogle Scholar
  43. 43.
    Zsila F, Bikádi Z, Simonyi M (2003) Tetrahedron Asymmetr 14:2433–2444CrossRefGoogle Scholar
  44. 44.
    Zsila F, Bikádi Z, Fitos I, Simonyi M (2004) Curr Drug Discov Tech 1:133–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fakhrossadat Mohammadi
    • 1
  • Abdol-Khalegh Bordbar
    • 1
  • Adeleh Divsalar
    • 2
  • Khosro Mohammadi
    • 3
  • Ali Akbar Saboury
    • 2
  1. 1.Laboratory of Biophysical Chemistry, Department of ChemistryUniversity of IsfahanIsfahanIran
  2. 2.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  3. 3.Department of Chemistry, College of SciencesPersian Gulf UniversityBushehrIran

Personalised recommendations