Skip to main content
Log in

The Theoretical Three-dimensional Structure of Bacillus thuringiensis Cry5Aa and Its Biological Implications

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cry5Aa is a crystal protein produced by Bacillus thuringiensis serovar. damstadiensis during its stationary phase, this δ-endotoxin is active against nematodes and has great potential for nematodes control. The theoretical model of the three-dimensional structure of Cry5Aa was predicted by homology modeling on the structures of the Cry1Aa which is specific to Lepidopteran insects. The structure of the Cry5Aa resembles previously reported Cry toxin structures but shows the following distinctions. Cry5Aa has a long insertion in α2 of domain I. Some loops in the domain II and III of Cry5Aa are exposed to the solvent. In this work we give a brief description of our model and hypothesize the residues of the Cry5Aa that could be important in receptor recognition and pore formation. This model will be helpful for the design of mutagenesis experiments aimed to the improvement of toxicity, and lead to a deep understanding of the mechanism of action of nematicidal toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATP:

Adenosine-5′-triphosphate

Bt:

Bacillus thuringiensis

Cry:

Crystal

Cyt:

Cytolytic

RMSD:

Root mean square deviation

PMDB:

Protein model data base

References

  1. Ballester VV, Granero F, de Maagd RA, Bosch D, Mensua JL, Ferre J (1999) Appl Environ Microbiol 65:1900–1903

    CAS  Google Scholar 

  2. Bone LW, Bottjer KP, Gill SS (1987) J Parasitol 73:295–299

    Article  CAS  Google Scholar 

  3. Boonserm P, Davis P, Ellar DJ, Li J (2005) J Mol Biol 348:363–382

    Article  CAS  Google Scholar 

  4. Boonserm P, Mo M, Angsuthanasombat C, Lescar J (2006) J. Bacteriol 188:3391–3401

    Article  CAS  Google Scholar 

  5. Bottjer KP, Bone LW, Gill SS (1985) Exp Parasitol 60:239–244

    Article  CAS  Google Scholar 

  6. Burton SL, Ellar DJ, Li J, Derbyshire DJ (1999) J Mol Biol 287:1011–1022

    Article  CAS  Google Scholar 

  7. Ciordia H, Bizzell WE (1961) J Parasitol 47:411–416

    Google Scholar 

  8. DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos, CA

    Google Scholar 

  9. Delécluse A, Pancet S, Klier A, Rapoport G (1993) Appl Environ Microbiol 59:3922–3927

    Google Scholar 

  10. de Maagd RA, Weemen-Hendriks M, Stiekema W, Bosch D (2000) Appl Environ Microbiol 66:1559–1563

    Article  Google Scholar 

  11. Derbyshire DJ, Ellar DJ, Li J (2001) Acta Crystallogr Sect D 57:1938–1944

    Google Scholar 

  12. Fernandez LE, Perez C, Segovia L, Rodriguez MH, Gill SS, Bravo A, Soberon M (2005) FEBS Lett 579:3508–3514

    Article  CAS  Google Scholar 

  13. Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft JR, Pangborn W, English L (2001) Acta Crystallogr Sect D 57:1101–1109

    Google Scholar 

  14. Gazit E, La Rocca P, Sansom MS, Shai Y (1998) Proc Natl Acad Sci USA 95:12289–12294

    Article  CAS  Google Scholar 

  15. Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS (2005) Science 307:922–925

    Article  CAS  Google Scholar 

  16. Grochulski P, Masson L, Borisova S, Pusztai-Carey M, Schwartz JL, Brousseau R, Cygler M (1995) J Mol Biol 254:447–464

    Article  CAS  Google Scholar 

  17. Guex N, Peitsch MC (1997) Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  18. Gutierrez P, Alzate O, Orduz S (2001) Mem Inst Oswaldo Cruz 96:357–364

    CAS  Google Scholar 

  19. Hofmann C, Vanderbruggen H, Hofte H, Van Mellaert H (1988) Proc Natl Acad Sci USA 85:7844–7848

    Article  CAS  Google Scholar 

  20. Hyperchem Professional 8 Evaluation (2007) Hyperchem Inc

  21. Jurat-Fuentes JL, Adang MJ (2001) Appl Environ Microbiol 67:323–329

    Article  CAS  Google Scholar 

  22. Knowles BH, Ellar DJ (1987) Biochem Biophys Acta 924:509–518

    CAS  Google Scholar 

  23. Kotze AC, O’Grady J, Gough JM, Pearson R, Bagnall NH, Kemp DH, Akhurst RJ (2005) Int J Parasitol 35:1013–1022

    Article  CAS  Google Scholar 

  24. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  25. Li JD, Carroll J, Ellar DJ (1991) Nature 353:815–821

    Article  CAS  Google Scholar 

  26. Lijnzaad P, Berendsen HJ, Argos P (1996) Proteins 25:389–397

    Article  CAS  Google Scholar 

  27. Masson L, Tabashnik BE, Mazza A, Prefontaine G, Potvin L, Brousseau R, Schwartz JL (2002) Appl Environ Microbiol 68:194–200

    Article  CAS  Google Scholar 

  28. Mongan NP, Baylis HA, Adcock C, Smith GR, Sansom MS, Sattelle DB (1998) Recept Channels 6:213–228

    CAS  Google Scholar 

  29. Morse RJ, Yamamoto T, Stroud RM (2001) Structure 9:409–417

    Article  CAS  Google Scholar 

  30. Parker MW, Buckley JT, Postma JP, Tucker AD, Leonard K, Pattus F, Tsernoglou D (1994) Nature 367:292–295

    Article  CAS  Google Scholar 

  31. Payne J, Narva KE, Fu J (1998) US patent, 5831011

  32. Pigott CR, Ellar DJ (2007) Microbiol Mol Biol Rev 71:255–281

    Article  CAS  Google Scholar 

  33. Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Microbiol Biotechnol. 17:547–559

    CAS  Google Scholar 

  34. Schnepf HE, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Microbiol Mol Biol Rev 62:772–806

    Google Scholar 

  35. Schnepf HE, Schwab GE, Payne J, Narva KE, Foncerrada L (1998) US patent, 6632792

  36. Schwartz JL, Potvin L, Chen XJ, Brousseau R, Laprade R, Dean DH (1997) Appl Environ Microbiol 63:3978–3984

    CAS  Google Scholar 

  37. Sick AJ, Schwab GE, George E, Payne JM (1994). US patent, 5281530

  38. Tuntitippawan T, Boonserm P, Katzenmeier G, Angsuthanasombat C (2005) FEMS Microbiol Lett 242:325–332

    Article  CAS  Google Scholar 

  39. Walters, F.S., Slatin, S.L., Kulesza, C.A., and English, L.H. (1993). 196, 921–926

  40. Wang FX, Xia LQ, Ding XZ, Zhao XM, Shan SP, Mo XT, Zhang YM, Yu ZN (2008) Chem J Chin 29:1999–2002

    CAS  Google Scholar 

  41. Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Proc Natl Acad Sci 100:2760–2765

    Article  CAS  Google Scholar 

  42. Xia LQ, Zhao XM, Ding XZ, Wang FX, Sun YJ (2008) J Mol Model 14:843–848

    Article  CAS  Google Scholar 

  43. Zhao XM, Xia LQ, Wang FX, Ding XZ, Shan SP, Zhang YM (2008) Acta Chimi Sin 66:108–111

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. You-min Zhang (Gene Bridge GmbH, Dresden, Germany) for a critical reading of the manuscript. This research was supported by grants from the National Natural Science Foundation of China (No. 30670052, 30570050) and 863 Program of China (2006AA02Z187, 2006AA10A212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Li-Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin-Min, Z., Li-Qiu, X., Xue-Zhi, D. et al. The Theoretical Three-dimensional Structure of Bacillus thuringiensis Cry5Aa and Its Biological Implications. Protein J 28, 104–110 (2009). https://doi.org/10.1007/s10930-009-9169-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9169-0

Keywords

Navigation