Skip to main content
Log in

Molecular Dynamics Study of the Structure, Flexibility and Dynamics of Thermostable L1 Lipase at High Temperatures

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn2+-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn2+-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

Cα-RMSd:

Backbone root mean square deviation

LGA:

Local-global alignment

MD:

Molecular dynamics

NPT:

Isobaric-isothermal ensemble

PDB:

Protein data bank

PME:

Particle mesh Ewald

Rg :

Radius of gyration

RMSf:

Root mean square fluctuation

SASA:

Solvent accessible surface area

References

  1. Kim HK, Park SY, Lee JK, Oh TK (1998) Biosci Biotechnol. Biochem 62:66–71

    Article  CAS  Google Scholar 

  2. Jeong S, Kim H, Kim S, Chi S, Pan J, Oh T, Ryu S (2002) J Biol Chem 277:17041–17047

    Article  CAS  Google Scholar 

  3. Adamczak M, Krishna SH (2004) Food Tech Biotech 42(4):251–264

    CAS  Google Scholar 

  4. Fields PA (2001) Comp Biochem. Physiol A 129:417–431

    Article  CAS  Google Scholar 

  5. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) FEMS Microbiol Rev 28:25–42

    Article  CAS  Google Scholar 

  6. Colombo G (2004) Mem S. A. It., Suppl Nr 4:24–36

    Google Scholar 

  7. Daggett V (2006) Chem Rev 106:1898–1916

    Article  CAS  Google Scholar 

  8. Adcock SA, McCammon JA (2006) Chem Rev 106:1589–1615

    Article  CAS  Google Scholar 

  9. Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Angew Chem Int Ed 45:4064–4092

    Article  CAS  Google Scholar 

  10. Mark AE, van Gunsteren WF (1992) Biochemistry 31:7745–7748

    Article  CAS  Google Scholar 

  11. Gunsteren WF, Dolenc J, Mark AE (2008) Curr Opin Struct Biol 18(2):149–153

    Article  Google Scholar 

  12. Day R, Bennion BJ, Ham S, Daggett V (2002) J Mol Biol 322:189–203

    Article  CAS  Google Scholar 

  13. DeBakker PIW, Hunenberger PH, McCammon JA (1999) J Mol Biol 285:1811–1830

    Article  CAS  Google Scholar 

  14. Kumar R, Nussinov R (2001) Cell Mol Life Sci 58:1216–1233

    Article  CAS  Google Scholar 

  15. Missimer JH, Steinmetz MO, Baron R, Winkler FK, Richard A, Kammerer RA, Daura X, van Gunsteren WF (2007) Protein Sci 16:1349–1359

    Article  CAS  Google Scholar 

  16. Papaleo E, Riccardi L, Villa C, Fantucci P, De Gioia L (2006) Biochim Biophys Acta 1764(8):1397–1406

    CAS  Google Scholar 

  17. Shinkai A, Hirano A, Aisaka K (1996) J Biochem (Tokyo) 120:915–921

    CAS  Google Scholar 

  18. Patker S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O (1998) Chem Phys Lipids 93:95–101

    Article  Google Scholar 

  19. Liu HL, Wang WC (2003) Prot Engng 16:19–25

    Article  Google Scholar 

  20. Pikkemaat MC, Linssen ABM, Berendsen HJC, Janssen DB (2002) Prot Engng 15(3):185–192

    Article  CAS  Google Scholar 

  21. Leap (1995) University of California, San Fransisco, USA

  22. AMBER version 8.0 (2004) University of California, San Francisco, US

  23. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comp Chem 24:1999–2012

    Article  CAS  Google Scholar 

  24. Wang T, Wade RC (2006) J Chem Theory Comput 2:140–148

    Article  CAS  Google Scholar 

  25. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  27. Beck DAC, Daggett V (2004) Methods 34:112–120

    Article  CAS  Google Scholar 

  28. Zemla A (2003) Nucleic Acids Res 31(113):3370–3374

    Article  CAS  Google Scholar 

  29. Pastor RW, Brooks BR, Szabo A (1988) Mol Phys 65:1409–1419

    Article  Google Scholar 

  30. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  31. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comp Phys 23:327–341

    Article  CAS  Google Scholar 

  32. NACCESS (1993) Department of Biochemistry and Molecular Biology, University College London, UK

  33. Clothia C (1976) J Mol Biol 105:1–12

    Article  Google Scholar 

  34. Lee B, Richards FM (1971) J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  35. Colombo G, Merz KM (1999) J Am Chem Soc 121:6895–6903

    Article  CAS  Google Scholar 

  36. Eastman P, Pellegrini M, Doniach S (1999) J Chem Phys 110:10141–10152

    Article  CAS  Google Scholar 

  37. Garcia AE, Krumhansl JA, Frauenfelder H (1997) Proteins 29((2):153–160

    Article  CAS  Google Scholar 

  38. Hünenberger PH, Mark AE, van Gunsteren WF (1995) J Mol Biol 252(4):492–503

    Article  Google Scholar 

  39. Meinhold L, Smith JC (2005) J Biophys 88:2554–2563

    Article  CAS  Google Scholar 

  40. Yang L, Song G, Jernigan RL (2007) Proceedings of 2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops. Fremont, CA, USA, pp 89–96

    Book  Google Scholar 

  41. VMD Version 1.8.6 (2007) Theoretical and Computational Biophysics Group, University of Illinois and Beckman Institute, USA

  42. Wintrode PL, Zhang D, Vaidehi N, Arnold FH, Goddard WA (2003) J Mol Biol 327:745–757

    Article  CAS  Google Scholar 

  43. Leach A (1996) In Molecular Modelling: Principles and Applications. Essex, Addison-Wesly Pub Co

    Google Scholar 

  44. Baron R, McCammon JA (2007) Biochemistry 46:10629–10642

    Article  CAS  Google Scholar 

  45. Tsai AM, Nussinov R (1997) Protein Sci 6:24–42

    Article  CAS  Google Scholar 

  46. Lazaridis T, Lee I, Karplus M (1997) Prot Sci 6:2589–2605

    CAS  Google Scholar 

  47. Tyndall JD, Sinchaikul S, Fothergill-Gilmore LA, Taylor P, Walkinshaw MD (2002) J Mol Biol 323:859–869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from GRF UPM for RA and Malaysia Ministry of High Education (FRGS 5523138) for research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Basyaruddin Abdul Rahman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abedi Karjiban, R., Abdul Rahman, M.B., Basri, M. et al. Molecular Dynamics Study of the Structure, Flexibility and Dynamics of Thermostable L1 Lipase at High Temperatures. Protein J 28, 14–23 (2009). https://doi.org/10.1007/s10930-008-9159-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9159-7

Keywords

Navigation