Skip to main content
Log in

Kinetic Analysis of Conformational Changes of GroEL Based on the Fluorescence of Tyrosine 506

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The conformational changes of GroEL during the ATPase cycle in the presence of GroES were studied by measuring the fluorescence intensity time course of intrinsic tyrosine Y506, which is located near the nucleotide-binding site. A GroEL solution containing GroES was mixed with an ATP solution to initiate the reaction cycle. The tyrosine fluorescence intensity relative to that without the nucleotide reached 112% within the dead time of the apparatus (>15 s−1) and further increased to 123% at 0.57 s−1 followed by a decrease to 102% at 0.32 s−1. An initial conformational change and a second intermediate state were expected to occur in ATP-bound GroEL because similar changes were observed for the ATPase-deficient D398A mutant. The conformational change to the third intermediate state corresponded to a process during or after ATP hydrolysis because D398A had no decreasing phase. The second intermediate state before ATP hydrolysis was characterized for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AEX:

A mutant of GroEL (C138S/C458S/C519S/D83C/K327C)

AEXred :

Reduced AEX

AEXox :

Oxidized AEX

References

  1. Amir A, Horovitz A (2004) Kinetic analysis of ATP-dependent inter-ring communication in GroEL. J Mol Biol 338(5):979–988

    Article  CAS  Google Scholar 

  2. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371(6498):578–586

    Article  CAS  Google Scholar 

  3. Burston SG, Ranson NA, Clarke AR (1995) The origins and consequences of asymmetry in the chaperonin reaction cycle. J Mol Biol 249:138–152

    Article  CAS  Google Scholar 

  4. Chaudhry C, Horwich AL, Brunger AT, Adams PD (2004) Exploring the structural dynamics of the E. coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J Mol Biol 342(1):229–245

    Article  CAS  Google Scholar 

  5. Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR (1999) A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL. J Mol Biol 293:667–684

    Article  CAS  Google Scholar 

  6. Fenton WA, Horwich AL (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36(2):229–256

    Article  CAS  Google Scholar 

  7. Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    Article  CAS  Google Scholar 

  8. Hartl FU, Hayer Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  Google Scholar 

  9. Inobe T, Arai M, Nakao M, Ito K, Kamagata K, Makio T, Amemiya Y, Kihara H, Kuwajima K (2003) Equilibrium and kinetics of the allosteric transition of GroEL studied by solution X-ray scattering and fluorescence spectroscopy. J Mol Biol 327(1):183–191

    Article  CAS  Google Scholar 

  10. Kad NM, Ranson NA, Cliff MJ, Clarke AR (1998) Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. J Mol Biol 278(1):267–278

    Article  CAS  Google Scholar 

  11. Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237(2):260–273

    Article  CAS  Google Scholar 

  12. Motojima F, Makio T, Aoki K, Makino Y, Kuwajima K, Yoshida M (2000) Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Biochem Biophys Res Commun 267(3):842–849

    Article  CAS  Google Scholar 

  13. Murai N, Makino Y, Yoshida M (1996) GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps. J Biol Chem 271(45):28229–28234

    Article  CAS  Google Scholar 

  14. Nishida N, Motojima F, Idota M, Fujikawa H, Yoshida M, Shimada I, Kato K (2006) Probing dynamics and conformational change of the GroEL–GroES complex by 13C NMR spectroscopy. J Biochem (Tokyo) 140(4):591–598

    CAS  Google Scholar 

  15. Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001) ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107:869–879

    Article  CAS  Google Scholar 

  16. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798

    Article  CAS  Google Scholar 

  17. Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL (1999) GroEL–GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell 97:325–338

    Article  CAS  Google Scholar 

  18. Saibil HR, Ranson NA (2002) The chaperonin folding machine. Trends Biochem Sci 27(12):627–632

    Article  CAS  Google Scholar 

  19. Taguchi H, Ueno T, Tadakuma H, Yoshida M, Funatsu T (2001) Single-molecule observation of protein–protein interactions in the chaperonin system. Nat Biotechnol 19:861–865

    Article  CAS  Google Scholar 

  20. Taniguchi M, Yoshimi T, Hongo K, Mizobata T, Kawata Y (2004) Stopped-flow fluorescence analysis of the conformational changes in the GroEL apical domain: relationships between movements in the apical domain and the quaternary structure of GroEL. J Biol Chem 279(16):16368–16376

    Article  CAS  Google Scholar 

  21. Todd MJ, Viitanen PV, Lorimer GH (1994) Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265:659–666

    Article  CAS  Google Scholar 

  22. Ueno T, Taguchi H, Tadakuma H, Yoshida M, Funatsu T (2004) GroEL mediates protein folding with a two successive timer mechanism. Mol Cell 14(4):423–434

    Article  CAS  Google Scholar 

  23. Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995) Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83:577–587

    Article  CAS  Google Scholar 

  24. Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL (1996) Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction. Cell 84:481–490

    Article  CAS  Google Scholar 

  25. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  CAS  Google Scholar 

  26. Yifrach O, Horovitz A (1998) Transient kinetic analysis of adenosine 5′-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37(20):7083–7088

    Article  CAS  Google Scholar 

  27. Chen L, Sigler PB (1999) The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell 99:757–768

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Mitsubishi Foundation (T.F.) and by Grants-in-Aid for Scientific Research on Priority Areas (H.T., M.Y.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Funatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosono, K., Ueno, T., Taguchi, H. et al. Kinetic Analysis of Conformational Changes of GroEL Based on the Fluorescence of Tyrosine 506. Protein J 27, 461–468 (2008). https://doi.org/10.1007/s10930-008-9157-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9157-9

Keywords

Navigation