Skip to main content
Log in

Influence of Polyols on the Stability and Kinetic Parameters of Invertase from Candida utilis: Correlation with the Conformational Stability and Activity

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Invertase (β-d-fructofuranoside fructohydrolase-E.C. 3.2.1.26) is a sucrose hydrolyzing enzyme found in microbial, plant and animal sources. Invertase from Candida utilis is a dimeric glycoprotein composed of two identical monomer subunits with an apparent molecular mass of 150 kDa. We investigated the mechanism of stabilization of invertase with polyols (glycerol, xylitol, and sorbitol). Activity, thermodynamic and kinetic measurements of invertase were performed as a function of polyol concentration and showed that polyols act as very effective stabilizing agents. The result from the solvent-invertase interaction shows preferential exclusion of the polyols from the protein domain leading to preferential hydration of protein. Apparent thermal denaturation temperature of the protein (T m ) rose from 75 °C to a maximum of 85 °C in 30% glycerol. The stabilization has been attributed to the preferential hydration of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T m :

Midpoint temperature of thermal unfolding

UV:

Ultraviolet

CD:

Circular dichroism

kDa:

Kilodalton

ξ3 :

Preferential interaction parameter

References

  1. Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M (2004) J Biol Chem 279:18903–18910

    Article  CAS  Google Scholar 

  2. Alder AJ, Greenfield N, Fasman GD (1973) Methods Enzymol 27:675–735

    Article  Google Scholar 

  3. Arica MY, Bayramoglu G (2006) J Mol Catal 38:131–138

    Article  CAS  Google Scholar 

  4. Athes V, Combes D (1998) Enzyme Microb Technol 22:532–537

    Article  CAS  Google Scholar 

  5. Belcarz A, Ginalska G, Lobarzewski J, Penel C (2002) Biochim Biophys Acta 1549:40–53

    Google Scholar 

  6. Bolen DW (2004) Methods 34:312–322

    Article  CAS  Google Scholar 

  7. Bolen DW, Baskakov IV (2001) J Mol Biol 310:955–963

    Article  CAS  Google Scholar 

  8. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  9. Burg MB, Kwon ED, Peters EM (1996) Kidney Int Suppl 57:S100–S104

    CAS  Google Scholar 

  10. Burg MB, Peters EM, Bohren KM, Gabbay KH (1999) Proc Natl Acad Sci USA 96:6517–6522

    Article  CAS  Google Scholar 

  11. Carninoi P, Nishiyama Y, Westover A, Itoh M, Nagaoka S, Sasaki N, Okazaki Y, Muramatsu M, Hayashizaki Y (1998) Proc Natl Acad Sci USA 95:520–524

    Article  Google Scholar 

  12. Casassa EF, Eisenberg H (1961) J Phys Chem 65:427–433

    Article  CAS  Google Scholar 

  13. Casassa EF, Eisenberg H (1964) Adv Protein Chem 19:287–395

    Article  CAS  Google Scholar 

  14. Chavez FP, Rodriguez L, Diaz J, Delgado JM, Cremata JA (1997) J Biotechnol 53:67–74

    Article  CAS  Google Scholar 

  15. Colaco C, Sen S, Thangavelu M, Pinder S, Roser B (1992) Nat Biotechnol 10:1007–1011

    Article  CAS  Google Scholar 

  16. Fagain CO (1995) Biochim Biophys Acta 1252:1–14

    Google Scholar 

  17. Fields PA, Wahlstrand BD, Somero GN (2001) Eur J Biochem 268:4497–4505

    Article  CAS  Google Scholar 

  18. Gekko K, Morikawa T (1981) J Biochem (Tokyo) 90:51–60

    CAS  Google Scholar 

  19. Gekko K, Timasheff SN (1981) Biochemistry 20:4667–4676

    Article  CAS  Google Scholar 

  20. Gibbs JB (1878) Trans Conn Acad 3:343–524

    Google Scholar 

  21. Goldstein A, Lampen JO (1975) Methods Enzymol 42:504–511

    Article  CAS  Google Scholar 

  22. Hassani L, Ranjbar B, Khajeh K, Manesh HN, Manesh MN, Sadeghi M (2006) Enzyme Microb Technol 38:118–125

    Article  CAS  Google Scholar 

  23. Kaushik JK, Bhat R (1998) J Phys Chem B 102:7058–7066

    Article  CAS  Google Scholar 

  24. Kaushik JK, Bhat R (2003) J. Biol Chem 278:26458–26465

    Article  CAS  Google Scholar 

  25. Kim YS, Jones SL, Dong A, Kendrick BS, Chang BS, Manning MC, Randolph TW, Carpenter JF (2003) Protein Sci 12:1252–1261

    Article  CAS  Google Scholar 

  26. Kita Y, Arakawa T, Lin TY, Timasheff SN (1994) Biochemistry 33:15178–15189

    Article  CAS  Google Scholar 

  27. Klibanov AM (1983) Adv Appl Microbiol 29:1–28

    Article  CAS  Google Scholar 

  28. Lee JC, Timasheff SN (1974) Biochemistry 13:257–265

    Article  CAS  Google Scholar 

  29. Lee JC, Timasheff SN (1974) Arch Biochem Biophys 165:268–273

    Article  CAS  Google Scholar 

  30. Lee JC, Timasheff SN (1981) J Biol Chem 256:7193–7201

    CAS  Google Scholar 

  31. Le’on M, Isorna P, Mene’ndez M, Sanz-Aparicio J, Polaina J (2007) Protein J 26:435–444

    Article  CAS  Google Scholar 

  32. Miller GA, Blum R, Glennon WE, Burton AL (1960) Anal Biochem 2:127–132

    Article  Google Scholar 

  33. Okazaki F, Shiraki K, Tamaru Y, Araki T, Takagi M (2005) Protein J 24:413–421

    Article  CAS  Google Scholar 

  34. Pace CN, Scholtz JM (1997) In: Creighton TE (ed) In protein structure: a practical approach. IRL Press, Oxford, UK, pp 299–321

    Google Scholar 

  35. Pradeep L, Udgaonkar JB (2004) J Biol Chem 279:40303–40313

    Article  CAS  Google Scholar 

  36. Prakash V (1982) J Biosci 4:347–359

    Article  CAS  Google Scholar 

  37. Prakash V, Timasheff SN (1985) Methods Enzymol 117:53–60

    Article  CAS  Google Scholar 

  38. Purich DL, Allison RD (1980) Methods Enzymol 64:3–46

    Google Scholar 

  39. Rebros M, Rosenberg M, Mlichova Z, Kristofikova L (2007) Food Chem 102:784–787

    Article  CAS  Google Scholar 

  40. Sahmetlioglu E, Yuruk H, Toppare L, Cianga I, Yagci Y (2006) React Funct Polym 66:365–371

    Article  CAS  Google Scholar 

  41. Scatchard G (1946) J Am Chem Soc 68:2315–2319

    Article  CAS  Google Scholar 

  42. Scharnagl C, Reif M, Friedrich J (2005) Biochim Biophys Acta 1749:187–213

    CAS  Google Scholar 

  43. Shaw A, Bott R (1996) Curr Opin Struct Biol 6:540–551

    Article  Google Scholar 

  44. Srimathi S, Jayaraman G (2005) Protein J 24:79–88

    Article  CAS  Google Scholar 

  45. Stockmayer WH (1950) J Chem Phys 18:58–61

    Article  CAS  Google Scholar 

  46. Street TO, Bolen DW, Rose GD (2006) Proc Natl Acad Sci USA 103:13997–14002

    Article  CAS  Google Scholar 

  47. Timasheff SN (2002) Biochemistry 41:13473–13482

    Article  CAS  Google Scholar 

  48. Xie G, Timasheff SN (1997) Protein Sci 6:211–221

    Article  CAS  Google Scholar 

  49. Yang JT, Wu CSC, Martinez HM (1986) Methods Enzymol 130:208–269

    Article  CAS  Google Scholar 

  50. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217:1214–1222

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Gangadhara gratefully acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishweshwaraiah Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangadhara, Ramesh Kumar, P. & Prakash, V. Influence of Polyols on the Stability and Kinetic Parameters of Invertase from Candida utilis: Correlation with the Conformational Stability and Activity. Protein J 27, 440–449 (2008). https://doi.org/10.1007/s10930-008-9154-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9154-z

Keywords

Navigation