Skip to main content
Log in

Model and Molecular Dynamic Simulations of Active and Inactive Endo-β-1,4-Mannanase in Tomato Fruit

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Endo-β-mannanase is a hemicellulase that is present in tomato fruit, and plays a role in its ripening. This enzyme protein is detectable in the cultivar Walter, but it is inactive due to the absence of the terminal four amino acids from its carboxyl-end. To elucidate why this deletion eliminates the activity of endo-β-mannanase, a molecular dynamics (MD) study was conducted on the conformation of the enzyme at normal and elevated temperatures. The root mean square deviations, root mean square fluctuations per residue, and secondary structural evolution during MD simulations were analyzed. Differences in stability and dynamics between the active and inactive endo-β-mannanases were documented; the inactive form has a lower stability than the active one. The loss of key amino acids from the C-terminal end of the protein indirectly affects the conformation of the catalytic Glu318 and stability of active site because of interactions between residues at the C-terminus and the rest of protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

PDB:

Protein data bank

SPC:

Simple point charge

RMSD:

Root mean square deviations

PME:

Particle mesh ewald

RMSF:

Root Mean Square fluctuations

DSSP:

Digital shape sampling and processing

LeMAN4a:

Lycopersicon esculentum endo-β-mannanase 4a

LeMAN4i:

Lycopersicon esculentum endo-β-mannanase 4i

References

  1. Banik M, Bourgault R, Bewley JD (2001) J Exp Bot 52:105–111

    Article  CAS  Google Scholar 

  2. Bassel GW, Mullen RT, Bewley JD (2001) Can J Bot 79:1417–1424

    Article  CAS  Google Scholar 

  3. Berendsen H, Postma J, van Gunsteren W, DiNola A, Haak J (1984) J Comput Phys 81:3684–3690

    CAS  Google Scholar 

  4. Berendsen HJC, van der Spoel D, Van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  5. Bewley JD, Banik M, Bourgault R, Feurtado JA, Toorop P, Hilhorst HWM (2000) J Exp Bot 51:529–538

    Article  CAS  Google Scholar 

  6. Bourgault R, Bewley JD (2002) Plant Physiol 130:1254–1262

    Article  CAS  Google Scholar 

  7. Bourgault R, Bewley JD, Alberici A, Decker D (2001) HortScience 36:72–75

    CAS  Google Scholar 

  8. Bourgault R, Oakley AJ, Bewley JD, Wilce MCJ (2005) Protein Sci 14:1233–1241

    Article  CAS  Google Scholar 

  9. Carey AT, Holt K, Picard S, Wilde R, Tucker GA, Bird CR, Schuch W, Seymour GB (1995) Plant Physiol 108:1099–1107

    Article  CAS  Google Scholar 

  10. Feurtado JA, Banik M, Bewley JD (2001) J Exp Bot 52:1239–1249

    Article  CAS  Google Scholar 

  11. Fischer RL, Bennett AB (1991) Annu Rev Plant Physiol Plant Mol Biol 42:67–73

    Article  Google Scholar 

  12. Fry SC (1989) Physiol Plant 75:532–536

    Article  CAS  Google Scholar 

  13. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Biochem J 282:821–828

    CAS  Google Scholar 

  14. Hess B, Bekker H, Berendsen H, Fraaije J (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  15. Hobson GE (1964) Biochem J 92:324–332

    CAS  Google Scholar 

  16. Huysamer M, Greve C, Labavitch JM (1997) Physiol Plant 101:314–322

    Article  CAS  Google Scholar 

  17. Itai A, Ishihara K, Bewley JD (2003) J Exp Bot 54:2615–2622

    Article  CAS  Google Scholar 

  18. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  19. Karplus M (2002) Acc Chem Res 35:321–323

    Article  CAS  Google Scholar 

  20. Kazlauskas RJ (2000) Curr Opin Chem Biol 4:81–88

    Article  CAS  Google Scholar 

  21. Lindahl E, Hess B, Van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  22. McQueen-Mason SJ, Cosgrove DJ (1995) Plant Physiol 107:87–100

    CAS  Google Scholar 

  23. Mo B, Bewley JD (2002) Planta 215:141–152

    Article  CAS  Google Scholar 

  24. Pressey R (1983) Plant Physiol 71:132–135

    CAS  Google Scholar 

  25. Pressey R (1989) Phytochemistry 28:3277–3280

    Article  CAS  Google Scholar 

  26. Šali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  Google Scholar 

  27. Sayle R, Milner-White EJ (1995) Trends Biochem Sci 20:374–376

    Article  CAS  Google Scholar 

  28. Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Nature 334:724–726

    Article  CAS  Google Scholar 

  29. Thomas CB, Kahn K (2000) Curr Opin Chem Biol 4:540–544

    Article  Google Scholar 

  30. Tieman DM, Harriman RW, Ramamohan G, Handa AK (1992) Plant Cell 4:667–679

    Article  CAS  Google Scholar 

  31. Tong CBS, Gross KC (1988) Physiol Plant 74:365–370

    Article  CAS  Google Scholar 

  32. Van Gunsteren WF, Billeter SR, Eising AA, Hűnenberger PH, Krűger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag AG an der ETH Zurich, Switzerland

    Google Scholar 

  33. Wallner SJ, Walker JE (1975) Plant Physiol 55:94–98

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the technical supports from Prof. Jin Wang (Nanjing University). This work was supported by a Chinese National Natural Science Foundation Grant (30600414), Heilongjiang Provincial Tackling Key Problems Project Grant on Science and Technology (GA06B103-1) and Northeast Agricultural University Innovation Team Grant to AW and Scientific Research Foundation for Returned Overseas Chinese Scholars from State Education Ministry to WZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijuan Zheng or Aoxue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Bewley, J.D., Hua, Z. et al. Model and Molecular Dynamic Simulations of Active and Inactive Endo-β-1,4-Mannanase in Tomato Fruit. Protein J 27, 363–370 (2008). https://doi.org/10.1007/s10930-008-9145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9145-0

Keywords

Navigation