Skip to main content
Log in

pH Dependence of the Isomerase Activity of Protein Disulfide Isomerase: Insights into its Functional Relevance

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The isomerase efficacy of the oxidoreductase, protein disulfide isomerase (PDI), has been examined by a simple method. Using this technique, the pH-dependence of relative efficiency of isomerization reactions by PDI has been evaluated and its impact on a key structure-forming step in the oxidative folding pathway of a model protein determined. Results reveal that PDI has a greater relative impact on thiol-disulfide reshuffling (isomerization) reactions and consequently the structure-forming step in oxidative folding at pH 7, as opposed to pH’s 8 and 9. These results suggest that PDI, which possesses an anomalously low thiol pKa, is fine-tuned to catalyze oxidative folding in the lumen of the endoplasmic reticulum where the ambient pH of ∼7 would otherwise retard thiol-disulfide exchange reactions and hinder acquisition of the native fold. The pH-dependent impact on isomerization catalysis has important implications for the development of synthetic chaperones for in vivo and in vitro applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PDI:

Protein disulfide isomerase

RNase (A):

Bovine pancreatic ribonuclease A

DTT:

Dithiothreitol

HPLC:

High performance liquid chromatography

References

  1. Arolas JL, Aviles FX, Chang JY, Ventura S (2006) Trends Biochem Sci 31:292–301

    Article  CAS  Google Scholar 

  2. Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Acc Chem Res 33:737–820

    Article  CAS  Google Scholar 

  3. Woycechowsky KJ, Raines RT (2000) Curr Opin Chem Bio l4:533–539 Review

    Article  Google Scholar 

  4. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Biochemistry 39:4207–4216

    Article  CAS  Google Scholar 

  5. Welker E, Narayan M, Wedemeyer WJ, Scheraga HA (2001) PNAS USA 98:2312–2316

    Article  CAS  Google Scholar 

  6. Welker E, Wedemeyer WJ, Narayan M, Scheraga HA (2001) Biochemistry 40:9059–9064

    Article  CAS  Google Scholar 

  7. Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) Annu Rev Genet 35:149–191

    Article  CAS  Google Scholar 

  8. Gilbert HF (1998) Methods Enzymol 290:26–50

    Article  CAS  Google Scholar 

  9. Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) Cell 124:61–73 Erratum in: (2006) Cell 124:1085–1088

  10. Tu BP, Weissman JS (2004) J Cell Biol 164:341–346

    Article  CAS  Google Scholar 

  11. Wilkinson B, Gilbert HF (2004) Biochim Biophys Acta 1699:35–44

    CAS  Google Scholar 

  12. Chivers PT, Laboissiere MC, Raines RT (1996) EMBO J 15:2659–2667

    CAS  Google Scholar 

  13. Zheng J, Gilbert HF (2001) J Biol Chem 276:15747–15752

    Article  CAS  Google Scholar 

  14. Shin HC, Scheraga HA (2000) J Mol Biol 4:995–1003

    Article  CAS  Google Scholar 

  15. Weissman JS, Kim PS (1993) Nature 365:185–188

    Article  CAS  Google Scholar 

  16. Gilbert HF, Kruzel ML, Lyles MM, Harper JW (1991) Protein Expr Purif 2:194–198

    Article  CAS  Google Scholar 

  17. Rothwarf DM, Scheraga HA (1993) Biochemistry 32:2671–2679

    Article  CAS  Google Scholar 

  18. Li YJ, Rothwarf DM, Scheraga HA (1995) Nat Struct Biol 2:489–494

    Article  CAS  Google Scholar 

  19. Narayan M, Welker E, Scheraga HA (2001) J Am Chem Soc 123:2909–2910

    Article  CAS  Google Scholar 

  20. Welker E, Narayan M, Volles MJ, Scheraga HA (1999) FEBS Lett. 460:477–479

    Article  CAS  Google Scholar 

  21. Volles MJ, Xu X, Scheraga HA (1999) Biochemistry 38:7284–7293

    Article  CAS  Google Scholar 

  22. Xu X, Rothwarf DM, Scheraga HA (1996) Biochemistry. 35:6406–6417

    Article  CAS  Google Scholar 

  23. Saito K, Welker E, Scheraga HA (2001) Biochemistry 40:15002–15008

    Article  CAS  Google Scholar 

  24. Iwaoka M, Wedemeyer WJ, Scheraga HA (1999) Biochemistry 38:2805–2815

    Article  CAS  Google Scholar 

  25. Laity JH, Shimotakahara S, Scheraga HA (1993) Proc Natl Acad Sci USA 90:615–619

    Article  CAS  Google Scholar 

  26. Hawkins HC, Freedman RB (1991) Biochem J 275:335–339

    CAS  Google Scholar 

  27. Kim JH, Johannes L, Goud B, Anthony C, Lingwood CA, Daneman R, Grinstein S (1998) PNAS USA 95:2997–3002

    Article  CAS  Google Scholar 

  28. Kersteen EA, Raines RT (2003) Antioxid Redox Signal 5:413–424

    Article  CAS  Google Scholar 

  29. Gough JD, Barrett EJ, Silva Y, Lees WJ (2006) J Biotechnol 125:39–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been possible through a start-up grant (UTEP) and discussions and assistance from Dr. Ervin Welker and Dr. John Xu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Narayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Narayan, M. pH Dependence of the Isomerase Activity of Protein Disulfide Isomerase: Insights into its Functional Relevance. Protein J 27, 181–185 (2008). https://doi.org/10.1007/s10930-007-9121-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9121-0

Keywords

Navigation