Skip to main content
Log in

Low Oxygen Affinity in Reptilian Hemoglobin D: Prediction of Residue Interactions in Geochelone carbonaria HbD by Homology Modeling

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The homology model of hemoglobin D from Geochelone carbonaria, the red-footed tortoise was predicted using the 3D structure coordinates of Geochelone gigantea hemoglobin D as the template. The model was built using the program, MODELLER (8v1) and evaluated with PROCHECK and PROSA. The present study features an in-depth analysis of the 3D model and its conformational changes brought about with variations in its environment. These structural changes are correlated with its ability to adapt to different environmental constraints enabling the organism to better suit to its natural habitat. The model shows additional contacts between amino acid pairs of α-119 and β-55, α-35 and β-124, α-103 and β-112, α-115 and β-116, α-120 and β-52, α-120 and β-55, α-36 and β-127 which are not found in human hemoglobin. It is predicted that these contacts may result in T-state stabilization thus lowering oxygen affinity. Furthermore, decrease in the interaction of phosphate heteroatoms with the amino acid residues of G. carbonaria Hb was also predicted in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Hb:

Hemoglobin

Rmsd:

Root mean square deviation

H-bonds:

Hydrogen bonds

DPG:

2,3,diphosphoglycerate

IHP:

Inositol hexaphosphate

References

  1. Stepuro TL, Zinchuk VV (2006) J Phys Pharmacol 57:29–38

    CAS  Google Scholar 

  2. Giardina B, Mosca D, De Rosa MC (2004) Acta Physiol Scand 182:229–244

    Article  CAS  Google Scholar 

  3. Hourdez S, Weber RE (2005) J Inorg Biochem 99:130–141

    Article  CAS  Google Scholar 

  4. Riggs A (1964) Can J Biochem 42:763–775

    Article  CAS  Google Scholar 

  5. Brown JL, Ingram VM (1974) J Biol Chem 249:3960–3972

    CAS  Google Scholar 

  6. Hagopian HK, Ingram VM (1971) J Cell Biol 51:440–451

    Article  CAS  Google Scholar 

  7. Monica BM, Silvana B, Adriana SSD, Satie HO, Torsoni MA, Sara TO, Costa FF (2003) Comp Biochem Phys B 134:389–395

    Article  Google Scholar 

  8. Torsoni MA, Stoppa GR, Turra A, Ogo SH (2002) Braz J Biol 62:725–733

    Article  CAS  Google Scholar 

  9. Torsoni MA, Ogo SH (1995) Braz J Med Biol Res 28:1129–1131

    CAS  Google Scholar 

  10. Castano M, Olga V, Lugo MR (1981) Cespedesia 10:55–122

    Google Scholar 

  11. Torsoni MA, Viana RI, Stoppa GR, Barros BF, Cesquini M, Ogo SHJ (1996) Biochem Mol Biol Int 40:355–364

    CAS  Google Scholar 

  12. Perutz MF (1989) Q Rev Biophys 22:139–236

    CAS  Google Scholar 

  13. Bairoch AB, Boeckmann B (1991) Nucleic Acid Res 19:2247–2249

    CAS  Google Scholar 

  14. Althschul SF, Madden TL, Scaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acid Res 25:3389–3402

    Article  Google Scholar 

  15. Pearson WR (1990) Methods Enzymol 183:63–98

    Article  CAS  Google Scholar 

  16. Kuwada T, Hasegawa T, Satoh I, Ishikawa K, Shishikura F (2003) Prot Pept Lett 10:422–425

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne P (2000) Nucleic Acid Res 28:235–242

    Article  CAS  Google Scholar 

  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  19. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  20. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  21. Sippl MJ (1993) Proteins 17:355–362

    Article  CAS  Google Scholar 

  22. Monique L, Istvan K, Takashi Y, Judit F (2005) FEBS Lett 579:627–632

    Article  CAS  Google Scholar 

  23. Wallace AC, Laskowski RA, Thornton JM (1995) Prot Eng 8:127–134

    Article  CAS  Google Scholar 

  24. Goodman JM (1998) ChemWeb.com journal, the Alchemist

  25. Felsenstein J (1989) Cladistics 5:164–166

    Google Scholar 

  26. Pomponi M, Gavuzzo E, Bertonati C, Derocher AE, Lydersen C, Wiig O, Kovacs KM (2004) Biochimie 86:927–932

    Article  CAS  Google Scholar 

  27. James EK, Marcos AO, Qiang X, Stephen R, Austen FR, Marvin LH (1999) J Biol Chem 274:6411–6420

    Article  Google Scholar 

  28. Petruzzelli R, Gabriella A, Amalia L, Antonio G, Alessandro D, Bruno G (1996) Biochem J 316:959–965

    CAS  Google Scholar 

  29. Bordin S, Meza AN, Saad STO, Ogo SH, Costa FF (1997) Biochem Mol Biol Int 42:25–260

    Google Scholar 

  30. Bettati S, Mozzarelli A, Perutz MF (1998) J Mol Biol 281:581–585

    Article  CAS  Google Scholar 

  31. Liu XZ, Li SL, Jing H, Liang YH, Hua ZQ, Lu GY (2001) Acta Cryst D57:775–783

    CAS  Google Scholar 

  32. Liang YH, Liu XZ, Liu SH, Ying GL (2001) Acta Cryst D57:1850–1856

    CAS  Google Scholar 

  33. Perutz MF (1970) Nature 228:726–739

    Article  CAS  Google Scholar 

  34. Shih DT, Luisi BF, Miyazaki G, Perutz MF, Nagai K (1993) J Mol Biol 230(4): 1291–1296

    Article  CAS  Google Scholar 

  35. Riggs AF (1988) Ann Rev Physiol 50:181–204

    Article  CAS  Google Scholar 

  36. Perutz MF, Shih DT, Williamson D (1994) J Mol Biol 239(4):555–560

    Article  CAS  Google Scholar 

  37. Coletta M, Angeletti M, Ascone I (1999) Biophys J 76:1532–1536

    CAS  Google Scholar 

  38. Torsoni MA, Viana RI, Stoppa GR, Cesquini M, Barros BF, Ogo SH (1997) Comp Biochem Physiol 118A:679–684

    Article  CAS  Google Scholar 

  39. Riggs A (1998) J Exper Biol 201:1073–1084

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghosia Lutfullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutfullah, G., Khalil, H.S., Amin, F. et al. Low Oxygen Affinity in Reptilian Hemoglobin D: Prediction of Residue Interactions in Geochelone carbonaria HbD by Homology Modeling. Protein J 27, 141–150 (2008). https://doi.org/10.1007/s10930-007-9117-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9117-9

Keywords

Navigation