Skip to main content
Log in

Thermal-unfolding Reaction of Triosephosphate Isomerase from Trypanosoma cruzi

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Thermal denaturation of triosephosphate isomerase from Trypanosoma cruzi was studied by circular dicrhoism and fluorescence spectroscopies. The unfolding transition was found to be highly irreversible even at the very early stages of the reaction. Kinetic studies, allowed us to identify consecutive reactions. Firstly, only the tryptophan environment is altered. Next, changes on the secondary structure and hydrophobic surface exposure measured by 1-anilino-8-naphthalenesulfonate (ANS) binding were observed. Further conformational changes imply additional modifications on the secondary and tertiary structures and release of the hydrophobic dye leading to the formation of the unfolded state that is prone to aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TIM:

Triosephosphate isomerase

TcTIM:

Triosephosphate isomerase from Trypanosoma cruzi

TbTIM:

Triosephosphate isomerase from Trypanosoma brucei

yTIM:

Yeast triosephosphate isomerase

CD:

Circular dichroism

Tris:

Tris(hydroxy-methyl) aminomethane

Gdn-HCl:

Guanidine hydrochloride

TEA:

Triethanolamine

SCM:

Spectral centre of mass

References

  1. Branden CI (1991) Curr Opin Struct Biol 1:978–983

    Article  Google Scholar 

  2. Gromiha MM, Pujadas G, Magyar C, Selvaraj S, Simon I (2004) Proteins Struct Funct Bioinf 55:316–329

    Article  CAS  Google Scholar 

  3. Orengo CA, Jones DT, Thornton JM (1994) Nature 372:631–634

    Article  CAS  Google Scholar 

  4. Gualfetti JP, Masahiro I, Lee C, Kihara H, Bilsel O, Zitzewitz JA, Matthews CR (1999) Biochemistry 38:13367–13378

    Article  CAS  Google Scholar 

  5. Forsyth WR, Matthews CR (2002) J Mol Biol 320:1119–1133

    Article  CAS  Google Scholar 

  6. Chánez-Cárdenas ME, Pérez-Hernández G, Sánchez-Rebollar BG, Costas M, Vázquez-Contreras E (2005) Biochemistry 44:10883–10892

    Article  CAS  Google Scholar 

  7. Bilsel O, Zitzewitz JA, Bowers KE, Matthews CR (1999) Biochemistry 38:1018–1029

    Article  CAS  Google Scholar 

  8. Rojsajjakul T, Wintrode P, Vadrevu R, Matthews CR, Smith DL (2004) J Mol Biol 341: 241–253

    Article  CAS  Google Scholar 

  9. Hocker B, Beismann-Driemeyer S, Hettwer S, Lustig A, Sterner R (2001) Nat Struct Biol 8:32–36

    Article  CAS  Google Scholar 

  10. Mainfroid V, Mande SC, Hol WGJ, Martial JA, Goraj K (1996) Biochemistry 35:4110–4117

    Article  CAS  Google Scholar 

  11. Beaucamp N, Hofmann A, Kellerer B, Jaenicke R (1997) Protein Sci 6:2159–2165

    CAS  Google Scholar 

  12. Rietveld AW, Ferreira ST (1996) Biochemistry 35:7743–7751

    Article  CAS  Google Scholar 

  13. Moreau VH, Rietveld AWM, Ferreira ST (2003) Biochemistry 42:14831–14837

    Article  CAS  Google Scholar 

  14. Pan H, Raza AS, Smith DL (2004) J Mol Biol 336:1251–1263

    Article  CAS  Google Scholar 

  15. Gokhale RS, Ray SS, Balaram H, Balaram P (1999) Biochemistry 38:423–431

    Article  CAS  Google Scholar 

  16. Vázquez-Contreras E, Zubillaga-Luna RA, Mendoza-Hernández G, Costas M, Fernández-Velasco DA (2000) Protein Pept Lett 7:57–64

    Google Scholar 

  17. Morgan CJ, Wilkins DK, Smith LJ, Kawata Y, Dobson CM (2000) Biochim Biophys Acta 1163:89–96

    Google Scholar 

  18. Nájera H, Costas M, Fernández-Velasco DA (2003) Biochem J 370:785–792

    Article  CAS  Google Scholar 

  19. Lambeir AM, Backmann J, Ruiz-Sanz J, Filimonov V, Nielsen JE, Kursula I, Norledge BV, Wierenga RK (2000) Eur J Biochem 267:2516–2524

    Article  CAS  Google Scholar 

  20. Chánez-Cárdenas ME, Fernandez-Velasco DA, Vázquez-Contreras E, Coria R, Saavedra-Rincón G, Pérez-Montfort R (2002) Arch Biochem Biophys 399:117–129

    Article  CAS  Google Scholar 

  21. Téllez-Valencia A, Avila-Rios S, Pérez-Montfort R, Rodríguez-Romero A, Tuena de Gómez M, López-Calahorra F, Gómez-Puyou A (2002) Biochem Biophys Res Commun 295:958–963

    Article  CAS  Google Scholar 

  22. Benítez-Cardoza CG, Rojo-Domínguez A, Hernández-Arana A (2001) Biochemistry 40:9049–9058

    Article  CAS  Google Scholar 

  23. González-Mondragón E, Zubillaga-Luna RA, Saavedra-Lira E, Chánez-Cárdenas ME, Pérez-Montfort R, Hernández-Arana A (2004) Biochemistry 43:3255–3263

    Article  CAS  Google Scholar 

  24. Ostoa-Saloma P, Garza-Ramos G, Ramírez J, Becker I, Berzunza I, Landa A, Gómez-Puyou A, Tuena de Gómez-Puyou M, Pérez-Montfort R (1997) Eur J Biochem 244:700–705

    Article  CAS  Google Scholar 

  25. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423

    Article  CAS  Google Scholar 

  26. Freire E, van Osdol WW, Mayorga OL, Sanchez-Ruiz JM (1990) Annu Rev Biophys Biophys Chem 19:159–188

    Article  CAS  Google Scholar 

  27. Sánchez-Ruiz JM (1992) Biophys J 61:921–935

    Google Scholar 

  28. Tello-Solís SR, Hernández-Arana A (1995) Biochem J 311:969–974

    Google Scholar 

  29. Milardi D, La-Rosa C, Grasso D (1994) Biophys Chem 52:183–189

    Article  CAS  Google Scholar 

  30. Goins B, Freire E (1988) Biochemistry 27:2046–2052

    Article  CAS  Google Scholar 

  31. Demchenko AP (1988) Eur Biophys J 16:121–129

    Article  CAS  Google Scholar 

  32. Demchenko AP, Ladokhin AS (1988) Eur Biophys J 15:369–379

    Article  CAS  Google Scholar 

  33. Chen Y, Barkley MD (1998) Biochemistry 37:9976–9982

    Article  CAS  Google Scholar 

  34. Pattanaik P, Ravindra G, Sengupta C, Maithal K, Balaram P, Balaram H (2003) Eur J Biochem 270:745–756

    Article  CAS  Google Scholar 

  35. Solís-Mendiola S, Gutiérrez-González LH, Arroyo-Reyna A, Padilla-Zuñiga J, Rojo-Domínguez A, Hernández-Arana A (1998) Biochim Biophys Acta 1388:363–372

    Google Scholar 

  36. Plaxco KW, Simons KT, Baker D (1998) J Mol Biol 277:985–994

    Article  CAS  Google Scholar 

  37. Plaxco KW, Larson S, Ruczinski I, Riddle DS, Thayer EC, Buchwitz B, Davidson AR, Baker D (2000) J Mol Biol 298:303–312

    Article  CAS  Google Scholar 

  38. Baker D (2000) Nature 405:39–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Armando Gomez Puyou and Beatriz Aguirre for the facilities and help given throughout the purification of TcTIM. EMH received financial support from Instituto Politécnico Nacional and PIFI-IPN (20050356 and 20060916), LMMV thanks economic sustain from CONACyT (175886). This work was supported by grants from TWAS (04–352 RG/BIO/LA), CONACyT (45990 and 46168-M), ECOS m05–501 and SIP-IPN 20070141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia G. Benítez-Cardoza.

Additional information

Edgar Mixcoha-Hernández and Liliana M. Moreno-Vargas contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mixcoha-Hernández, E., Moreno-Vargas, L.M., Rojo-Domínguez, A. et al. Thermal-unfolding Reaction of Triosephosphate Isomerase from Trypanosoma cruzi . Protein J 26, 491–498 (2007). https://doi.org/10.1007/s10930-007-9090-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-007-9090-3

Keywords

Navigation