Skip to main content
Log in

Thermal Destabilization of Stem Bromelain by Trehalose

  • Published:
The Protein Journal Aims and scope Submit manuscript

Trehalose, a naturally occurring osmolyte, is considered as a universal protein stabilizer. We investigated the effect of the disaccharides, trehalose and sucrose, on the thermal stability and conformation of bromelain. To our surprise, bromelain in the presence of 1 M trehalose/sucrose was destabilized under thermal stress. The average Tm values as determined by UV spectroscopy and CD spectropolarimetry decreased by 5° and 7°C for bromelain in 1 M sucrose or trehalose solutions, respectively. The enzyme was also found to inactivate faster at 60°C in the presence of these osmolytes. The tertiary and secondary structure of bromelain undergoes small changes in the presence of sucrose/trehalose. Studies on the binding of these osmolytes with the native and the heat denatured enzyme revealed that sucrose/trehalose lead to preferential hydration of the denatured bromelain as compared to the native one, hence stabilizing more the denatured conformation. This is perhaps the first report on the destabilization of a protein by trehalose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Bromelain:

pineapple stem bromelain

FD:

fraction denatured

CD:

circular dichroism

T m :

mid-point of thermal transition

SDS-PAGE:

sodium dodecyl sulphate-polyacylamide gel electrophoresis.

References

  • Arroya-Reyna A., Hernandez-Arana A. (1995). Biochem. Biophys. Acta 1248: 123–128

    Google Scholar 

  • Arroya-Reyna A., Hernandez-Arana A., Arreguin-Espinosa R. (1994). Biochem. J. 300: 107–110

    Google Scholar 

  • Brand L., Toptygin D.. (2000). Chem. Phys. Lett. 322: 492–502

    Google Scholar 

  • Bulman A. L., Nelson H. C.. (2005). Proteins 58: 826–835

    Article  CAS  Google Scholar 

  • Carninci P., Nishiyana Y., Westover A., Itoh M., Nagaoka S., Sasaki N., Okazaki Y., Muramatsu M., Hayashizaki Y. (1998). Proc. Natl. Acad. Sci. U.S.A. 95: 520–524

    Article  CAS  Google Scholar 

  • D′Alfonso L., Collini M., Baldini G. (2003). Eur. J. Biochem. 270: 2497–2504

    Article  CAS  Google Scholar 

  • Demeester, J., Dekeyser, P. M., Samyn, N., Sierens, W., and Lauwers, A. (1997). In: Lauwer, A. and Scharpe, S. (eds.), Pharmaceutical Enzymes, Marcel Dekker, New York, pp. 343–385

  • Higashiyama T.. (2002). Pure Appl. Chem. 74: 1263–1269

    CAS  Google Scholar 

  • Kaushik J. K., Bhat R.. (2003). J. Biol. Chem. 278: 26458–26465

    Article  CAS  Google Scholar 

  • Kreilgaard L., Frokjaer S., Flink J. M., Randolph T. W., Carpenter J. F.. (1998). Arch. Biochem. Biophys. 360: 121–134

    Article  CAS  Google Scholar 

  • Lin T. Y., Timasheff S. N.. (1996). Protein Sci. 5: 372–381

    Article  CAS  Google Scholar 

  • López-Diez E. C., Bone S.. (2004). Biochem. Biophys. Acta 1673: 139–148

    Google Scholar 

  • Melo E. P., Faria T. Q., Martins L. O, Gonçalves A. M., Cabral J. M. (2001). Proteins 42: 542–552

    Article  CAS  Google Scholar 

  • Neumann D., Kohlbacher O., Lenhof H. P., Lehr C. M.. (2002). Eur. J. Biochem. 269: 1518–1524

    Article  CAS  Google Scholar 

  • Pawar S. A., Deshpande U. V.. (2000). Eur. J. Biochem. 267: 6331–6338

    Article  CAS  Google Scholar 

  • Ritonja A., Rowan A. D., Buttle D. J., Rowlings N. D., Turk V., Barett A. J.. (1989). FEBS Lett. 247: 419–424

    Article  CAS  Google Scholar 

  • Sola-Penna M., Ferreira-Pereira A., Lemos A. P., Meyer-Ferrandes J. R.. (1997). Eur. J. Biochem. 248: 24–29

    Article  CAS  Google Scholar 

  • Souillac P. O., Middaugh C. R., Rytting J. H.. (2002). Int. J. Pharm. 235: 207–218

    Article  CAS  Google Scholar 

  • Sun W. Q., Davidson P.. (1998). Biochem. Biophys. Acta 1425: 235–244

    CAS  Google Scholar 

  • Vanhoof, G., and Cooremann, W. (1997). In: Lauwer, A. and Scharpe, S. (ed.), Pharmaceutical Enzymes, Marcel Dekker, New York, pp. 131–153

  • Von Seggern C. E., Cotter R. J.. (2004). J. Mass Spectrom. 39: 736–742

    Article  CAS  Google Scholar 

  • Wright W. W., Guffanti G. T., Vanderkooi J. M.. (2003). Biophys. J. 85: 1980–1995

    Article  CAS  Google Scholar 

  • Zancan P., Sola-Penna M.. (2005). Arch. Biochem. Biophys. 444: 52–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Facilities provided by Aligarh Muslim University are gratefully acknowledged. The work was also supported by the department of Science and Technology, Government of India, under its FIST programme, and the University Grants Commission, India under its special assistance programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Younus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, S., Khan, M.A. & Younus, H. Thermal Destabilization of Stem Bromelain by Trehalose. Protein J 26, 117–124 (2007). https://doi.org/10.1007/s10930-006-9052-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-006-9052-1

Keywords

Navigation