Skip to main content
Log in

Expression Optimization and Biochemical Characterization of a Recombinant γ-Glutamyltranspeptidase from Escherichia coli Novablue

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A truncated Escherichia coli Novablue γ-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His6-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 °C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 °C and 9, respectively. The apparent K m and V max values for γ-glutamyl-p-nitroanilide as γ-glutamyl donor in the transpeptidation reaction were 37.9 μM and 53.7 × 10−3 mM min−1, respectively. The synthesis of L-theanine was performed in a reaction mixture containing 10 mM L-Gln, 40 mM ethylamine, and 1.04 U His6-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

GGT:

γ-glutamyltranspeptidase

EcGGT:

Escherichia coli GGT

X-gal:

5–bromo-4-chloro-3-indolyl-β-D-galactopyranoside

IPTG:

isopropyl-β-D-thiogalactopyranoside

PAGE:

polyacrylamide gel electrophoresis

SDS-PAGE:

sodium dodecyl sulfate-PAGE

L-γ-Glu-p-NA:

L-γ-glutamyl-p-nitroanilide.

References

  • Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990) J. Mol. Biol. 215: 403–410

    Article  CAS  Google Scholar 

  • Blattner F. R., Plunkett G. I., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F., Gregor J., Davis N. W., Kirkpatrick H. A., Goeden M. A., Rose D. J., Mau B., Shao Y. (1997) Science 277: 1453–1474

    Article  CAS  Google Scholar 

  • Brannigan J. A., Dodson G., Duggleby H. J., Moody P. C., Smith P. C., Tomchick D. R., Murzin A. G. (1995) Nature (Lodon) 378: 416–419

    Article  CAS  Google Scholar 

  • Carrio M. M., Villaverade A. (2001) FEBS Lett. 489: 29–33

    Article  CAS  Google Scholar 

  • Chapon V., Simpson H. D., Morelli X., Brun E., Barras F. (2000) J. Mol. Biol. 303: 117–123

    Article  CAS  Google Scholar 

  • Chevalier C., Thiberge J. M., Ferrero R. L., Labigne A. (1999) Mol. Microbiol. 31: 1359–1372

    Article  CAS  Google Scholar 

  • Eder J., Fersht A. R. (1995) Mol. Microbiol. 16: 609–614

    Article  CAS  Google Scholar 

  • Elce J. S., Broxmeyer B. (1976) Biochem. J. 153: 223–232

    CAS  Google Scholar 

  • Harding C. O., Williams P., Wagner E., Chang D. S., Wild K., Colwell R. E., Wolff J. A. (1997) J. Biol. Chem. 272: 12560–12567

    Article  CAS  Google Scholar 

  • Hashimoto W., Suzuki H., Yamamoto K., Kumagai H. (1995) J. Biochem. (Tokyo) 118: 75–80

    CAS  Google Scholar 

  • Hockney R. C. (1994) Trends Biotechnol. 12: 456–463

    Article  CAS  Google Scholar 

  • Hodgson J. (1993) Bio/Technology 11: 887–893

    Article  CAS  Google Scholar 

  • Huang H. B., Chi M. C., Hsu W. H., Liang W. C., Lin L. L. (2005) Bioprocess Biosyst. Eng. 27: 389–398

    Article  CAS  Google Scholar 

  • Ichinose H., Togari A., Suzuki H., Kumagai H., Nagatsu T. (1987) J. Neurochem. 49: 928–932

    Article  CAS  Google Scholar 

  • Inoue M., Hiratake J., Suzuki H., Kumagai H., Sakata K. (2000) Biochemistry 39: 7764–7771

    Article  CAS  Google Scholar 

  • Ishiye M., Niwa M. (1992) FEMS Microbiol. Lett. 76: 235–241

    CAS  Google Scholar 

  • Izard J. W., Kendall D. A. (1994) Mol. Microbiol. 13: 765–773

    Article  CAS  Google Scholar 

  • Kakuda T., Yanase H., Utsunomiya K., Nozawa A., Unno T., Kataoka K. (2000) Neurosci. Lett. 289: 189–192

    Article  CAS  Google Scholar 

  • Kiefhaber T., Rudolph R., Kohler H. H., Buchner J. (1991) Bio/Technology 9: 211–218

    Article  Google Scholar 

  • Kikuchi K., Nagatsu T., Togari A., Kumagai H. (1986) J. Chromatogr. 357: 191–198

    Article  Google Scholar 

  • Kim Y., Kim S., Earnest T. N., Hol W. G. (2002) J. Biol. Chem. 277: 2823–2829

    Article  CAS  Google Scholar 

  • Laemmli U. K. (1970) Nature (London) 227: 680–685

    Article  CAS  Google Scholar 

  • Lammertyn E., Anné J. (1998) FEMS Microbiol. Lett. 160: 1–10

    Article  CAS  Google Scholar 

  • Lee Y. S., Park S. S. (1996) J. Bacteriol. 181: 1403–1408

    Google Scholar 

  • Li S., Smith J. L., Zalkin H. (1998) J. Bacteriol. 180: 4576–4582

    Google Scholar 

  • Lu H. M., Lory S. (1996) EMBO J. 15: 429–436

    CAS  Google Scholar 

  • Manchenko G. P. (1994) Handbook of Detection of Enzymes on Electrophoresis Gels, CRC Press, London, pp. 109

    Google Scholar 

  • Mergulhão F. J. M., Summers D. K., Monteiro G. A. (2005) Biotechnol. Adv. 23: 177–202

    Article  CAS  Google Scholar 

  • Nakayama R., Kumagai H., Tuchikura T. (1984) J. Bacteriol. 160: 341–346

    CAS  Google Scholar 

  • Ogawa Y., Hosoyama H., Hamano M., Motai H. (1991) Agric. Biol. Chem. 55: 2971–2977

    CAS  Google Scholar 

  • Oinonen C., Rouvinen J. (2000) Protein Sci. 9: 2329–2337

    Article  CAS  Google Scholar 

  • Okada T., Suzuki H., Wada K., Kumagai H., Fukuyama K. (2006) Proc. Natl. Acad. Sci. USA 103: 6471–6476

    Article  CAS  Google Scholar 

  • Orlowski M., Meister A. (1963) Biochim. Biophys. Acta 73: 679–681

    Article  CAS  Google Scholar 

  • Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. (1994) Nucl. Acids Res. 22: 1125–1127

    CAS  Google Scholar 

  • Perler F. B., Xu M. Q., Paulus H. (1997) Curr. Opin. Chem. Biol. 1: 292–299

    Article  CAS  Google Scholar 

  • Saarela J., Laine M., Tidanen R., Oinonen C., Jalanko A., Rouvinen A., Pellonen L. (1998) J. Biol. Chem. 273: 25320–25328

    Article  CAS  Google Scholar 

  • Sakato Y., Hashizume T., Kishimoto Y. (1949) Nippon Nogeikagaku Kaishi 23: 269–271

    Google Scholar 

  • Sambrook J., Russell D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp. 1.31–1.125

    Google Scholar 

  • Sasaoka K., Kito M., Onishi Y. (1965) Agric. Biol. Chem. 29: 984–988

    CAS  Google Scholar 

  • Sauvonnet N., Pugsley A. P. (1996) Mol. Microbiol. 22: 1–7

    Article  CAS  Google Scholar 

  • Schein C. H. (1989) Bio/Technology 7: 1141–1148

    CAS  Google Scholar 

  • Schumacher G., Sizmann D., Haug H., Buckle P., Bock A. (1986) Nucl. Acids Res. 14: 5713–5727

    CAS  Google Scholar 

  • Smith T. K., Ikeda Y., Fujii J., Taniguchi N., Meister A. (1995) Proc. Natl. Acad. Sci. USA 92: 2360–2364

    Article  CAS  Google Scholar 

  • Smith T. K., Meister A. (1995) J. Biol. Chem. 270: 12476–12480

    Article  CAS  Google Scholar 

  • Sørensen H. P., Mortensen K. K. (2005) J. Biotechnol. 115: 113–128

    Article  CAS  Google Scholar 

  • Stole E., Seddon A. P., Welner D., Meister A. (1990) Proc. Natl. Acad. Sci. USA 87: 1706–1709

    Article  CAS  Google Scholar 

  • Suzuki H., Hashimoto W., Kumagai H. (1999) J. Mol. Catal. B 6: 175–184

    Article  CAS  Google Scholar 

  • Suzuki H., Kajimoto Y., Kumagai H. (2002) J. Agric. Food Chem. 50: 313–318

    Article  CAS  Google Scholar 

  • Suzuki H., Kato K., Kumagai H. (2004) J. Biotechnol. 111: 291–295

    Article  CAS  Google Scholar 

  • Suzuki H., Kumagai H. (2002) J. Biol. Chem. 277: 43536–43543

    Article  CAS  Google Scholar 

  • Suzuki H., Kumagai H., Echigo T., Tochikura T. (1988) Biochem. Biophys. Res. Commun. 150: 33–38

    Article  CAS  Google Scholar 

  • Suzuki H., Kumagai H., Echigo T., Tochikura T. (1989) J. Bacteriol. 171: 5169–5172

    CAS  Google Scholar 

  • Suzuki H., Kumagai H., Tochikura T. (1986a) J. Bacteriol. 168: 1325–1331

    CAS  Google Scholar 

  • Suzuki H., Kumagai H., Tochikura T., (1986b) J. Bacteriol. 168: 1332–1335

    CAS  Google Scholar 

  • Tachiki T., Suzuki H., Wakisaka S., Yano T., Tochikura T. (1986) J. Gen. Appl. Microbiol. 32: 545–548

    CAS  Google Scholar 

  • Tachiki T., Yamada T., Mizuno K., Ueda M., Shiode J., Fukami H. (1998) Biosci. Biotechnol. Biochem. 62: 1279–1283

    Article  CAS  Google Scholar 

  • Taniguchi N., Ikeda Y. (1998) Adv. Enzymol. Relat. Areas Mol. Biol. 72: 239–278

    CAS  Google Scholar 

  • Tate S. S., Meister A. (1981) Mol. Cell. Biochem. 39: 357–368

    Article  CAS  Google Scholar 

  • Wickremasinghe R. L., Perera K. P. W. C. (1972) Tea Q 43: 175–179

    CAS  Google Scholar 

  • Yokogoshi H., Kobayashi M., Mochzuki M., Terashima T. (1998) Neurochem. Res. 23: 667–673

    Article  CAS  Google Scholar 

  • Yokogoshi H., Kato Y., Sagesaka Y. M., Takihara-Matsuura T., Kakuda T., Takeuchi N. (1995) Biosci. Biotechnol. Biochem. 59: 615–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (NSC-94-2313-B-241-002) from National Science Council of the Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Liu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, YF., Weng, YM., Hu, HY. et al. Expression Optimization and Biochemical Characterization of a Recombinant γ-Glutamyltranspeptidase from Escherichia coli Novablue. Protein J 25, 431–441 (2006). https://doi.org/10.1007/s10930-006-9037-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-006-9037-0

Keywords

Navigation