Skip to main content
Log in

Effect of Glycation of Hemoglobin on its Interaction with Trifluoperazine

  • OriginalPaper
  • Published:
The Protein Journal Aims and scope Submit manuscript

Trifluoperazine (TFZ), a phenothiazine drug, penetrates into human erythrocytes and releases oxygen by interaction with hemoglobin. TFZ-induced oxygen release from hyperglycemic erythrocytes isolated from diabetic patients is considerably less compared to that from the cells of normoglycemic individuals. In diabetes mellitus, hemoglobin is significantly glycated by glucose. Non-glycated hemoglobin, HbA0 and its major glycated analog, HbA1c have been separated from the blood samples of diabetic patients. TFZ releases considerable amount of oxygen from HbA0, but very little from HbA1c. Spectrofluorimetric studies reveal that TFZ forms excited state complexes with both HbA0 and HbA1c. Titration of HbA0 with TFZ in a spectrophotometric study exhibits two isosbestic points. Similar experiment with HbA1c causes gradual loss of the Soret peak without appearance of any isosbestic point indicating a possibility of heme loss during interaction, which is also supported by gel filtration experiment and SDS-PAGE experiment followed by heme staining. The results suggest that drug action on hemoglobin is influenced by glycation-induced structural modification of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

TFZ:

trifluoperazine

CPZ:

chlorpromazine

HbA0 :

non-glycated hemoglobin

HbA1c :

glycated hemoglobin

TBA:

thiobarbituric acid

PBS:

phosphate buffered saline

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Baba Y., Kai M., Kamada T., Setoyama S. and Otsuji S. (1979). Diabetes 28:1138–1140

    Article  CAS  Google Scholar 

  • Bhattacharyya J., Bhattacharyya M., Chakraborti A. S., Chaudhuri U., Poddar R. K. (1998). Int. J. Biol. Macromol. 23: 11–18

    Article  CAS  Google Scholar 

  • Bhattacharyya J., Bhattacharyya M., Chakraborti A. S., Chaudhuri U., Poddar R. K. (1994). Biochem. Pharmacol. 47: 2049–2053

    Article  CAS  Google Scholar 

  • Bhattacharyya J., Bhattacharyya M., Chakraborti A. S., Chaudhuri U., Poddar R. K. (1996). J. Pharm. Pharmacol. 48: 965–977

    CAS  Google Scholar 

  • Biemel K. M., Friedl D. A., Lederer M. O. (2002). J. Biol. Chem. 277:24907–24915

    Article  CAS  Google Scholar 

  • Budavari S., O’Neil M. J., Smith A., Heckelman P. E. (eds) (1989). In the Merck Index, 11th Edn. Merck, USA, p.2184

    Google Scholar 

  • Chakraborti A. S. (2003). Mol. Cell. Biochem. 253:49–54

    Article  CAS  Google Scholar 

  • Cohen M. P., Wu V. (1994). Meth. Enzymol. 231:65–75

    CAS  Google Scholar 

  • Cordoba J., Robocras M. D., Jones M. N. (1988). Int. J. Biol. Macromol. 10:270–276

    Article  CAS  Google Scholar 

  • Cussimanio B. L., Booth A. A., Todd P., Hudson B. G., Khalifah R. G. (2003). Biophys. Chem. 105:743–755

    Article  CAS  Google Scholar 

  • De Rosa M. C., Sanna M. T., Messana I., Castagnola M., Galtieri A., Tellone E., Scatena R., Bolta M., Giardina B (1998). Biophys. Chem. 72:323–335

    Article  Google Scholar 

  • Demol N. J., Busker R. W. (1984). Chem. Biol. Interact. 52:79–92

    Article  CAS  Google Scholar 

  • Flukinger R., Winterhalter K. H. (1976). FEBS Lett. 71:356–366

    Article  Google Scholar 

  • Halliwell B., Gutteridge J. M. C. (1990). Meth. Enzymol. 186:1–88

    CAS  Google Scholar 

  • Huang T. H., Redfield A. G. (1976). J. Biol. Chem. 251:7114–7119

    CAS  Google Scholar 

  • Inouye M., Mio T., Sumino K. (1999) Metabolism 48:205–209

    Article  CAS  Google Scholar 

  • Kapp E. A., Daya S., Whitley C. G. (1990). Biochem. Biophys. Res. Commun. 163:1383–1389

    Article  Google Scholar 

  • Kar M., Chakraborti A. S. (1999). Ind. J. Exptl. Biol. 37:190–192

    CAS  Google Scholar 

  • Kar M., Chakraborti A. S. (2001). Curr. Sci. 80:770–773

    CAS  Google Scholar 

  • Khoo U. Y., Newman D. J., Miller W. K., Price C. P. (1994). Eur. J. Clin. Chem. Clin. Biochem. 32:435–440

    CAS  Google Scholar 

  • Klatt P., Pfeiffer S., List B. M., Lehner D., Glatter O., Bachinger H. P., Werner R., Schmidt K. (1996). J.Biol.Chem. 271:7336–7342

    Article  CAS  Google Scholar 

  • May & Baker Ltd. (1971). In the Red Book of M & B Medical Products, 9th Edn. Dagenham, England, pp. 67–75

    Google Scholar 

  • McDonald M. J., Bleichman M., Bunn H. F., Noble R. W. (1979). J. Biol. Chem. 254:702–707

    CAS  Google Scholar 

  • Miller, J. A., Gravalles, E., and Bunn, H. F. (1980). J. Clin. Invest. 65, 896–901.

    Article  CAS  Google Scholar 

  • Panter S. S. (1994). Meth. Enzymol. 231:502–514

    Article  CAS  Google Scholar 

  • Peterson K. P., Pavlovich J. G., Goldstein D., Little R., England J., Peterson C. M. (1998). Clin. Chem. 44: 1951–1958

    CAS  Google Scholar 

  • Rosen P., Nawroth P. P., King G., Moller W., Tritschler H. J., Packer L. (2001). Diabetes Metab. Res. Rev. 17: 189–212

    Article  CAS  Google Scholar 

  • Roy A., Sen S., Chakraborti A. S. (2004). Free Radic. Res. 38:139–146

    Article  CAS  Google Scholar 

  • Sadrzadeh S. M., Graf E., Panter S. S., Hallaway P. E., Eaton J. W. (1984). J. Biol. Chem. 259:14354–14356

    CAS  Google Scholar 

  • Schleicher E. D., Olgemoller B., Wiedenmann E., Gerbitz K. D. (1993). Clin. Chem. 39:625–628

    CAS  Google Scholar 

  • Sen S., Roy A., Chakraborti A. S. (2005). Biophys. Chem. 113:289–298

    Article  CAS  Google Scholar 

  • Sil S., Chakraborti A. S. (2002). Mol. Cell. Biochem. 237:103–110

    Article  CAS  Google Scholar 

  • Sil S., Bose T., Roy D., Chakraborti A. S. (2004). J. Biosci. 29:281–291

    Article  CAS  Google Scholar 

  • Sil S., Kar M., Chakraborti A. S. (1997). J. Photochem. Photobiol. B: Biol. 41:67–72

    Article  Google Scholar 

  • Stewart J. M., Kilpatric E. S., Cathcart S., Small M., Dominiczac M. H. (1994). Ann. Clin. Biochem. 31:153–159

    Google Scholar 

  • Svacina S., Hovorka R. and Skrha J. (1990). Comput. Meth. Progr. Biomed. 32:259–263

    Article  CAS  Google Scholar 

  • Takasu N., Komonga I., Asawa T., Nagasawa Y. (1991). Diabetes 40:1141–1145

    Article  CAS  Google Scholar 

  • Turk Z., Misur I., Turk N., Benko B. (1999). Clin. Chem. Lab. Med. 37:813–820

    Article  CAS  Google Scholar 

  • Watala C., Gwozdzinski K., Malek M. (1992). Int. J. Biochem. 24:1295–1302

    Article  CAS  Google Scholar 

  • West J. B. (eds) (1985). In Best and Taylor’s Physiological Basis of Medical Practices. Williams and Wilkins, London, pp. 546–571

    Google Scholar 

  • Wolffenbuttel B. H., Giordino D., Founds H. W., Bucala R. (1996). Lancet 347:513–515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the University Grants Commission, New Delhi and one of us (T.B) received a research fellowship from the Commission. Thanks are due to Prof. C. K. DasGupta of this Department and Dr. S. Roy, Department of Biochemistry, University of Calcutta for allowing us to use the Hitachi F-3010 spectrofluorimeter and Gilson 5/6 oxygraph machine, respectively. We are thankful to Prof. U. Chaudhuri of this Department for useful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sankar Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, M., Roy, A., Bose, T. et al. Effect of Glycation of Hemoglobin on its Interaction with Trifluoperazine. Protein J 25, 202–211 (2006). https://doi.org/10.1007/s10930-006-9003-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-006-9003-x

KEY WORDS

Navigation