Skip to main content
Log in

Artificial Chaperone-assisted Refolding of GuHCl-Denatured α-Amylase at Low Temperature: Refolding versus Aggregation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Refolding of GuHCl-denatured α-amylase was investigated using the artificial chaperone-assisted method. Three different cationic detergents (CTAB, TTAB and DTAB) and two nonionic detergents (Tween 80 and Triton X-100) were evaluated as the capturing reagents along with α- and β-CD as the stripping agents. The refolding yields, at a final protein concentration of 0.15 mg/ml, were 82, 71 and 66% in the presence of β-CD and CTAB, TTAB or DTAB, respectively. To improve the refolding yield and to suppress the extent of aggregation, the initial rate of the stripping step was slowed down by maintaining the refolding environment at 4°C for about 3 min followed by raising the temperature to 25°C. Under this thermal procedure, the refolding yield and the extent of aggregation were changed from 82 and 25% at 25°C to 94 and 7% at 4°C, respectively. These findings may assist the activity recovery of recombinant proteins at relatively high concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GuHCl:

guanidine hydrochloride

CD:

cyclodextrin

BSA:

Bovine serum albumin

DNS:

2,4-dinitro salicylic acid

CTAHS:

cetyltrimethylammonium hydrogen sulfate

CTAB:

cetyltrimethylammonium bromide

TTAB:

tetradecyl trimethylammonium bromide

DTAB:

dodecyl trimethylammonium bromide

CMC:

critical micelle concentration

References

  • V. R. Agashe F. U. Hartl (2000) Semin. Cell Dev. Biol. 11 15–25 Occurrence Handle10.1006/scdb.1999.0347 Occurrence Handle1:CAS:528:DC%2BD3cXivF2murY%3D

    Article  CAS  Google Scholar 

  • D. W. Armstrong F. Nome L. A. Spino T. D. Golden (1986) J. Am. Chem. Soc. 108 1418–1421 Occurrence Handle1:CAS:528:DyaL28XhsVyhtrw%3D

    CAS  Google Scholar 

  • P. Bernfeld (1951) Advances in Enzymology VII Interscience Publ New York 379

    Google Scholar 

  • S. D. Betts J. King (1998) Protein Sci. 7 1516–1523 Occurrence Handle1:CAS:528:DyaK1cXks1eqt7c%3D Occurrence Handle10.1002/pro.5560070704

    Article  CAS  Google Scholar 

  • B. T. Brazil J. L. Cleland R. S. McDowell N. J. Skelton K. Paris P. M. Horowitz (1997) J. Biol. Chem. 272 5105–5111 Occurrence Handle1:CAS:528:DyaK2sXhsValurY%3D

    CAS  Google Scholar 

  • R. Brunschier M. Danner R. Seckler (1993) J. Biol. Chem. 268 2767–2772 Occurrence Handle1:CAS:528:DyaK3sXhvVGqsbs%3D

    CAS  Google Scholar 

  • J. L. Cleland S. E. Builder J. R. Swartz M. Winkler J. Y. Chang D. I. Wang (1992) Biotechnology 10 1013–1019 Occurrence Handle1:CAS:528:DyaK38Xmt12msbs%3D

    CAS  Google Scholar 

  • A. L. Fink (1999) Physiol. Rev. 79 425–449 Occurrence Handle1:CAS:528:DyaK1MXivFektb4%3D

    CAS  Google Scholar 

  • E. Ganea C. Coman (2002) Rom. J. Biochem. 39 21–26 Occurrence Handle1:CAS:528:DC%2BD2cXkt1Sgsbk%3D

    CAS  Google Scholar 

  • C. Ganesh F. N. Zaidi J. B. Udgaonkar R. Varadarajan (2001) Protein Sci. 10 1635–1644 Occurrence Handle10.1110/ps.8101 Occurrence Handle1:CAS:528:DC%2BD3MXlsVelu7k%3D

    Article  CAS  Google Scholar 

  • A. N. Glazer E. L. Smith (1961) J. Biol. Chem. 236 2942–2946 Occurrence Handle1:CAS:528:DyaF38XktVarsA%3D%3D

    CAS  Google Scholar 

  • C. Haase-Pettingell J. King (1988) J. Biol. Chem. 263 4977–4983 Occurrence Handle1:CAS:528:DyaL1cXhs1CmtLs%3D

    CAS  Google Scholar 

  • C. Haase-Pettingell J. King (1997) J. Biol. Chem. 267 88–102 Occurrence Handle1:CAS:528:DyaK2sXisFWgsbc%3D

    CAS  Google Scholar 

  • F. U. Harlt (1996) Nature 381 571–580

    Google Scholar 

  • R. Khodarahmi R. Yazdanparast (2004) Biochim. Biophys. Acta 1674 175–181 Occurrence Handle1:CAS:528:DC%2BD2cXnslGhsbY%3D

    CAS  Google Scholar 

  • T. Kokugan A. Yudiarto T. Takashima E. Dewi (1998) J. Chem. Eng. Jpn. 31 640–643 Occurrence Handle1:CAS:528:DyaK1cXls1Kjtr8%3D

    CAS  Google Scholar 

  • O. H. Lowry N. J. Rosebrough A. L. Farr R. J. Randall (1951) J. Biol. Chem. 193 262–272

    Google Scholar 

  • R. Lu J. Hao H. Wang L. Tong (1997a) J. Inclusion Phenom. Mol. Recognit. Chem. 28 213–221 Occurrence Handle10.1023/A:1007923723044 Occurrence Handle1:CAS:528:DyaK2sXkvFGksbs%3D

    Article  CAS  Google Scholar 

  • R. Lu J. Hao H. Wang L. Tong (1997b) J. Colloid Interface Sci. 192 37–42 Occurrence Handle1:CAS:528:DyaK2sXls12ntr8%3D

    CAS  Google Scholar 

  • L. F. McCoy K. P. Wong (1981) Biochemistry 20 3062–3067 Occurrence Handle10.1021/bi00514a012 Occurrence Handle1:CAS:528:DyaL3MXkt1SnsLY%3D

    Article  CAS  Google Scholar 

  • J. A. Mendoza G. H. Lorimer P. M. Horowitz (1992) J. Biol. Chem. 267 17631–17634 Occurrence Handle1:CAS:528:DyaK38Xlt1Oisbo%3D

    CAS  Google Scholar 

  • A. Mitraki B. Fane C. Haase-Pettingell J. Sturtevant J. King (1991) Science 253 54–58 Occurrence Handle1:CAS:528:DyaK3MXlslOlsbc%3D

    CAS  Google Scholar 

  • A. Mukhopadhyay (1997) Adv. Biochem. Eng. Biotechnol. 56 106–109

    Google Scholar 

  • H. Mwakibete R. Cristantino D. M. Bloor E. Wyn-Jones J. F. Holzwarth (1995) Langmuir 11 57–60 Occurrence Handle10.1021/la00001a013 Occurrence Handle1:CAS:528:DyaK2MXivFOrtLw%3D

    Article  CAS  Google Scholar 

  • S. Muzammil Y. Kumar S. Tayyeb (2000) Biochim. Biophys. Acta 1476 139–148 Occurrence Handle1:CAS:528:DyaK1MXnvFent7c%3D

    CAS  Google Scholar 

  • T. Okubo H. Kitano N. Ise (1976) J. Phys. Chem. 80 2661–2664 Occurrence Handle10.1021/j100565a008 Occurrence Handle1:CAS:528:DyaE2sXit1GitQ%3D%3D

    Article  CAS  Google Scholar 

  • R. Palepu V. C. Reinsborough (1988) Can. J. Chem. 66 325–328 Occurrence Handle1:CAS:528:DyaL1cXhslCjsL0%3D

    CAS  Google Scholar 

  • D. Rozema S. H. Gellman (1995) J. Am. Chem. Soc. 117 2373–2374 Occurrence Handle10.1021/ja00113a036 Occurrence Handle1:CAS:528:DyaK2MXjvVSqsLY%3D

    Article  CAS  Google Scholar 

  • D. Rozema S. H. Gellman (1996a) J. Biol. Chem. 271 3478–3487 Occurrence Handle1:CAS:528:DyaK28XhtFOksbg%3D

    CAS  Google Scholar 

  • D. Rozema S. H. Gellman (1996b) Biochemistry 35 15760–15771 Occurrence Handle10.1021/bi961638j Occurrence Handle1:CAS:528:DyaK28XmvVOhtbg%3D

    Article  CAS  Google Scholar 

  • E. Saint Aman D. Serve (1990) J. Colloid Interface Sci. 183 365–368

    Google Scholar 

  • K. J. Sasaki S. D. Christian E. E. Tucker (1990) J. Colloid Interface Sci. 134 412–416 Occurrence Handle10.1016/0021-9797(90)90151-D Occurrence Handle1:CAS:528:DyaK3cXhtVWiu7c%3D

    Article  CAS  Google Scholar 

  • M. A. Speed D. I. C. Wang J. King (1996) Nat. Biotechnol. 14 1283–1287 Occurrence Handle10.1038/nbt1096-1283 Occurrence Handle1:CAS:528:DyaK28XmtFagsrY%3D

    Article  CAS  Google Scholar 

  • S. Tandon P. M. Horowitz (1987) J. Biol. Chem. 262 4486–4491 Occurrence Handle1:CAS:528:DyaL2sXhslWqsbs%3D

    CAS  Google Scholar 

  • B. Tutaj A. Kasprzyk J. Czapkiewicz (2003) J. Incl. Phenom. Macro. Chem. 47 133–136 Occurrence Handle1:CAS:528:DC%2BD2cXis1Chsg%3D%3D

    CAS  Google Scholar 

  • W. M. Z. Wan Yunus J. Taylor D. M. Bloor D. G. Hall E. Wyn Jones (1992) J. Phys. Chem. 96 8979–8982 Occurrence Handle10.1021/j100201a052 Occurrence Handle1:CAS:528:DyaK38XlvF2nsLg%3D

    Article  CAS  Google Scholar 

  • Y. Xie D. B. Wetlaufer (1996) Protein Sci. 5 517–523 Occurrence Handle1:CAS:528:DyaK28XhsFyjsr4%3D

    CAS  Google Scholar 

  • G. J. Xu C. L. Tsou (1963) Acta Biochem. Biophys. Sinica 3 450–458

    Google Scholar 

  • Y. X. Zhang X. H. Song S. L. Yan H. M. Zhou (2003) J. Protein Chem. 22 405–409 Occurrence Handle10.1023/B:JOPC.0000005454.98224.6e Occurrence Handle1:CAS:528:DC%2BD3sXptlGlur4%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Yazdanparast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodagholi, F., Yazdanparast, R. Artificial Chaperone-assisted Refolding of GuHCl-Denatured α-Amylase at Low Temperature: Refolding versus Aggregation. Protein J 24, 303–313 (2005). https://doi.org/10.1007/s10930-005-6751-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-005-6751-y

Keywords

Navigation