Skip to main content
Log in

Comparison of Guanidine Hydrochloride (GdnHCl) and Urea Denaturation on Inactivation and Unfolding of Human Placental Cystatin (HPC)

  • Published:
The Protein Journal Aims and scope Submit manuscript

The activity and conformational change of human placental cystatin (HPC), a low molecular weight thiol proteinase inhibitor (12,500) has been investigated in presence of guanidine hydrochloride (GdnHCl) and urea. The denaturation of HPC was followed by activity measurements, fluorescence spectroscopy and Circular Dichroism (CD) studies. Increasing the denaturant concentration significantly enhanced the inactivation and unfolding of HPC. The enzyme was 50% inactivated at 1.5 M GdnHCl or 3 M urea. Up to 1.5 M GdnHCl concentration there was quenching of fluorescence intensity compared to native form however at 2 M concentration intensity increased and emission maxima had 5 nm red shift with complete unfolding in 4–6 M range. The mid point of transition was in the region of 1.5–2 M. In case of urea denaturation, the fluorescence intensity increased gradually with increase in the concentration of denaturant. The protein unfolded completely in 6–8 M concentration of urea with a mid-point of transition at 3 M. CD spectroscopy shows that the ellipticity of HPC has increased compared to that of native up to 1.5 M GdnHCl and then there is gradual decrease in ellipticity from 2 to 5 M concentration. At 6 M GdnHCl the protein had random coil conformation. For urea the ellipticity decreases with increase in concentration showing a sigmoidal shaped transition curve with little change up to 1 M urea. The protein greatly loses its structure at 6 M urea and at 8 M it is a random coil. The urea induced denaturation follows two-state rule in which Native→Denatured state transition occurs in a single step whereas in case of GdnHCl, intermediates or non-native states are observed at lower concentrations of denaturant. These intermediate states are possibly due to stabilizing properties of guanidine cation (Gdn+) at lower concentrations, whereas at higher concentrations it acts as a classical denaturant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GdnHC1:

Guanidine Hydrochloride

HPC:

Human Placental Cystatin

CD:

Circular Dichroism

Gdn+:

Guanidine cation

(SDS):

Sodium dodecyl sulphate

D 1/2 value:

Concentration of denaturant at which protein is half denaturated and mid point of transition is reached

EDTA:

Ethylene diamine tetraacetate

NaCl:

Sodium Chloride

PAGE:

Polyacrylamide gel electrophoresis

NMR:

Nuclear Magnetic Resonance

Na+:

Sodium cation

Cl:

Chloride anion

N→D:

Native to Denatured transition

RNase:

Ribonuclease

References

  • A. Ahmad Md. S Akhtar V. Bhakuni (2001) Biochemistry 40 1945–1955 Occurrence Handle10.1021/bi001933a Occurrence Handle1:CAS:528:DC%2BD3MXlsFGisQ%3D%3D

    Article  CAS  Google Scholar 

  • I. Assfalg-Machleidt M. Jochum W. Klaubert D. Inthorn W. Machleidt (1998) Biol. Chem. Hoppe-Seyler 369 263–269

    Google Scholar 

  • K. C. Aune C. Tanford (1969) Biochemistry 8 4586–4590 Occurrence Handle1:CAS:528:DyaE3cXhvVOjsg%3D%3D

    CAS  Google Scholar 

  • N. Ballery M. Desmadril P. Minard J. M. Yon (1993) Biochemistry 32 669 Occurrence Handle10.1021/bi00053a040

    Article  Google Scholar 

  • A. J. Barrett (1987) TIBS 12 193 Occurrence Handle1:CAS:528:DyaL2sXltFWnu7Y%3D

    CAS  Google Scholar 

  • A. J. Barrett N. D. Rawlings M. E. Davies W. Machleidt G. Salvesen V. Turk (1986) NoChapterTitle A.J. Barrett G. Salvesen (Eds) Proteinase Inhibitors Elsevier Amsterdam 515–569

    Google Scholar 

  • D. Barrick F. M. Hughson R. L. Baldwin (1994) J. Mol. Biol. 237 588–601 Occurrence Handle10.1006/jmbi.1994.1257 Occurrence Handle1:CAS:528:DyaK2cXkslKnu7o%3D

    Article  CAS  Google Scholar 

  • A. Bonincontro S. Cinelli T. Comaschi G. Onori (2004) Phys. Chem. Chem. Phys. 6 1039–1042 Occurrence Handle10.1039/b313117c Occurrence Handle1:CAS:528:DC%2BD2cXhsFSjtbk%3D

    Article  CAS  Google Scholar 

  • D. N. Brems P. L. Brown G. W. Becker (1990) J. Biol. Chem. 265 5504–5511 Occurrence Handle1:CAS:528:DyaK3cXit12rs7o%3D

    CAS  Google Scholar 

  • D. N. Brems S. M. Plaisted H. A. Havel E. W. Kauffman J. D. Stodola L. C. Eaton R. D. White (1985) Biochemistry 24 7662–7668 Occurrence Handle1:CAS:528:DyaL28XhsFamsA%3D%3D

    CAS  Google Scholar 

  • Y. H. Chen J. T. Yang H. M. Martinez (1972) Biochemistry 11 IssueID22 4120–4131 Occurrence Handle10.1021/bi00772a015 Occurrence Handle1:CAS:528:DyaE3sXht12ltw%3D%3D

    Article  CAS  Google Scholar 

  • G. Damaschun C. Gernat H. Damachun V. E. Bychkova O. B. Ptitsyn (1986) Int. J. Biol. Macromol. 8 226–230 Occurrence Handle10.1016/0141-8130(86)90031-0 Occurrence Handle1:CAS:528:DyaL28Xls1Oiu78%3D

    Article  CAS  Google Scholar 

  • J. M. Delaisse P. Ledent G. Vaes (1991) Biochem. J. 279 167–174 Occurrence Handle1:CAS:528:DyaK38Xjs1Kmuw%3D%3D

    CAS  Google Scholar 

  • R. A. Deshpande M. I. Khan V. Shankar (2003) Biochm. Biophys. Acta 1648 IssueID1–2 184–194 Occurrence Handle1:CAS:528:DC%2BD3sXjvFWmu7k%3D

    CAS  Google Scholar 

  • K. A. Dill D. Shortle (1991) Annu. Rev. Biochem. 60 795–825 Occurrence Handle10.1146/annurev.bi.60.070191.004051 Occurrence Handle1:CAS:528:DyaK3MXlsFeitb4%3D

    Article  CAS  Google Scholar 

  • D. A. Dolgikh R. I. Gilmanshin E. V. Brazhnikov V. E. Bychkova G. V. Semisotnov S. Yu. Venyaminov O. B. Ptitsyn (1981) FEBS Lett. 136 311–315 Occurrence Handle10.1016/0014-5793(81)80642-4 Occurrence Handle1:CAS:528:DyaL38XpvFOjtg%3D%3D

    Article  CAS  Google Scholar 

  • I. Ekiel M. Abrahamson D. B. Fulton P. Lindahl A. C. Storer W. Levadoux M. Latrance S. Labelle Y. Pomerleau D. Groleau (1997) J. Mol. Biol. 271 266 Occurrence Handle10.1006/jmbi.1997.1150 Occurrence Handle1:CAS:528:DyaK2sXls12rt7Y%3D

    Article  CAS  Google Scholar 

  • A. C. Ferreon D. W. Bolen (2004) Biochemistry 43 IssueID42 13357–13369 Occurrence Handle1:CAS:528:DC%2BD2cXnvFGhu74%3D

    CAS  Google Scholar 

  • K. Gast D. Zirver H. Welfle V. E. Bychkova O. B. Ptitsyn (1986) Int. J. Biol. Macromol. 8 231–236 Occurrence Handle10.1016/0141-8130(86)90032-2 Occurrence Handle1:CAS:528:DyaL28Xls1Oiu7w%3D

    Article  CAS  Google Scholar 

  • Y. Goto M. Takahishi A. L. Fink (1990) Biochemistry 29 3480 Occurrence Handle10.1021/bi00466a009 Occurrence Handle1:CAS:528:DyaK3cXhsFeqs7w%3D

    Article  CAS  Google Scholar 

  • Y. Goto Y. Hagihara D. Hamada M. Hoshino I. Nishii (1993) Biochemistry 32 11878–11885 Occurrence Handle10.1021/bi00095a017 Occurrence Handle1:CAS:528:DyaK3sXmtF2qtL8%3D

    Article  CAS  Google Scholar 

  • K. Inouye H. Tanaka H. Oneda (2000) J. Biochem. (Tokyo) 128 IssueID3 363–369 Occurrence Handle1:CAS:528:DC%2BD3cXns1antLc%3D

    CAS  Google Scholar 

  • T. Inui T. Okhubo M. Emi D. Irikura O. Hayaishi Y. Urade (2003) J. Biol.Chem. 278 IssueID5 2845–2852 Occurrence Handle10.1074/jbc.M209934200 Occurrence Handle1:CAS:528:DC%2BD3sXmt1GnsQ%3D%3D

    Article  CAS  Google Scholar 

  • M. V. Jagannadham D. Balasubramanian (1985) FEBS Lett. 188 326 Occurrence Handle10.1016/0014-5793(85)80396-3 Occurrence Handle1:CAS:528:DyaL2MXlslCls70%3D

    Article  CAS  Google Scholar 

  • A. Kabanda E. Goffin A. Bernard (1995) Kidney Int. 48 1946 Occurrence Handle1:STN:280:BymC28zisFI%3D

    CAS  Google Scholar 

  • M. Kunitz (1947) J. Physiol. 30 291 Occurrence Handle1:CAS:528:DyaH2sXit1Ghug%3D%3D

    CAS  Google Scholar 

  • K. Kuwajima (1989) Protein Struct. Funct. Genet. 6 87–103 Occurrence Handle1:CAS:528:DyaK3cXltVKmuw%3D%3D

    CAS  Google Scholar 

  • J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy Plenum Press New York

    Google Scholar 

  • L. M. Mayr F. X. Schmid (1993) Biochemistry 32 7994–7998 Occurrence Handle10.1021/bi00082a021 Occurrence Handle1:CAS:528:DyaK3sXkvFSlt7s%3D

    Article  CAS  Google Scholar 

  • C. Mitchinson R. H. Pain (1985) J. Mol. Biol 184 335 Occurrence Handle10.1016/0022-2836(85)90384-5

    Article  Google Scholar 

  • Y. K. Mork C. M. Kay L. E. Kay J. Forman-Kay (1999) J. Mol. Biol. 289 619–638

    Google Scholar 

  • C. N. Pace (1986) Methods Enzymol. 131 266–280 Occurrence Handle1:CAS:528:DyaL2sXmtlOitw%3D%3D

    CAS  Google Scholar 

  • C. N. Pace (1975) Crit. Rev. Biochem. 3 1–43 Occurrence Handle1:CAS:528:DyaE2MXkslelsbk%3D

    CAS  Google Scholar 

  • Y. D. Park J. Y. Jung D. W. Kim W. S. Kim M. J. Hahn J. M. Yang (2003) J. Protein Chem. 22 IssueID5 463–471 Occurrence Handle1:CAS:528:DC%2BD3sXptlGlurY%3D

    CAS  Google Scholar 

  • S. Prajapati V. Bhakuni K. R. Babu S. K. Jain (1998) Eur. J. Biochem. 255 178 Occurrence Handle10.1046/j.1432-1327.1998.2550178.x Occurrence Handle1:CAS:528:DyaK1cXksFaitrY%3D

    Article  CAS  Google Scholar 

  • P. L. Privalov N. N. Khechinashvili (1974) J. Mol. Biol. 86 665–684 Occurrence Handle10.1016/0022-2836(74)90188-0 Occurrence Handle1:CAS:528:DyaE2MXlt12gsA%3D%3D

    Article  CAS  Google Scholar 

  • P. L. Privalov (1979) Adv. Protein Chem. 33 167 Occurrence Handle1:CAS:528:DyaL3cXhsF2jsr4%3D

    CAS  Google Scholar 

  • O. B. Ptitsyn (1995) Adv. Protein Chem. 47 83–229 Occurrence Handle1:CAS:528:DyaK28XlvFOgsg%3D%3D

    CAS  Google Scholar 

  • F. Rashid S. P. Baba S. Sharma B. Bano (2004) Protein Pept. Lett. 11 IssueID6 583–591 Occurrence Handle10.2174/0929866043406364 Occurrence Handle1:CAS:528:DC%2BD2cXpvV2isrY%3D

    Article  CAS  Google Scholar 

  • B. Robson R. H. Pain (1976) Biochem. J. 155 331–334 Occurrence Handle1:CAS:528:DyaE28XksleksL0%3D

    CAS  Google Scholar 

  • S. N. Ryan W. A. Laing M. T. Mcmanus (1998) Phytochemistry 49 IssueID40 957 Occurrence Handle1:CAS:528:DyaK1cXmslWrtbc%3D

    CAS  Google Scholar 

  • D. Shortle M. S. Ackerman (2001) Science 293 487–489 Occurrence Handle10.1126/science.1060438 Occurrence Handle1:STN:280:DC%2BD3MvhsVOlsw%3D%3D

    Article  CAS  Google Scholar 

  • D. Shortle (1996) Curr. Opin. Struct. Biol. 6 24–30 Occurrence Handle10.1016/S0959-440X(96)80091-1 Occurrence Handle1:CAS:528:DyaK28Xhtlamt74%3D

    Article  CAS  Google Scholar 

  • J. S. Smith J. M. Scholtz (1996) Biochemistry 35 7292–7297 Occurrence Handle1:CAS:528:DyaK28XivFSls7g%3D

    CAS  Google Scholar 

  • Tanford, C. (1968). In: Advances in Protein Chemistry. Academic Press, New York, pp. 121–128

  • A. Trabandt R. E. Gay S. Gay (1991) Arthritis Rheum. 34 444

    Google Scholar 

  • V. N. Uversky (1993) Biochemistry 32 13288–13298 Occurrence Handle10.1021/bi00211a042 Occurrence Handle1:CAS:528:DyaK3sXms1Glt7w%3D

    Article  CAS  Google Scholar 

  • K. S. Vassilenko V. N. Uversky (2002) Biochm. Biophys, Acta 1594 168–177 Occurrence Handle1:CAS:528:DC%2BD38Xos1ygtg%3D%3D

    CAS  Google Scholar 

  • G. F. Wang Z. F. Cao H. M. Zhou Y. F. Zhao (2000) Int. J. Biochem. Cell Biol. 32 873–878 Occurrence Handle1:CAS:528:DC%2BD3cXlsVOrtro%3D

    CAS  Google Scholar 

  • K. P. Wong C. Tanford (1973) J. Biol .Chem. 248 8518 Occurrence Handle1:CAS:528:DyaE2cXlslShtg%3D%3D

    CAS  Google Scholar 

  • K. Wuthrich (1994.) Curr. Opin. Struct. Biol. 4 93 Occurrence Handle10.1016/S0959-440X(94)90065-5

    Article  Google Scholar 

  • M. Yao D. W. Bolen (1995) Biochemistry 34 3771–3781 Occurrence Handle10.1021/bi00011a035 Occurrence Handle1:CAS:528:DyaK2MXktFemsrs%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilqees Bano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, F., Sharma, S. & Bano, B. Comparison of Guanidine Hydrochloride (GdnHCl) and Urea Denaturation on Inactivation and Unfolding of Human Placental Cystatin (HPC). Protein J 24, 283–292 (2005). https://doi.org/10.1007/s10930-005-6749-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-005-6749-5

Keywords

Navigation