Skip to main content
Log in

Quantitative Structure-Activity Relationships for the Pre-Steady State of Pseudomonas Species Lipase Inhibitions by p-Nirophenyl-N-Substituted Carbamates

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1–6) are composed of two steps: (1) formation of the non-covalent enzyme–inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme–inhibitor adduct (E–I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, K S , and the rate constant for formation of the tetrahedral E–I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (kobs) versus inhibition concentration ([I]) plot against kobs=k2+k2[I]/(K S +[I]). Values of pK S , and log k2 are linearly correlated with the σ* values with the ρ* values of −2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the ρ* value of −2.0. The tetrahedral E–I adducts on the other hand are more negative charges than the E:I complexes due to the ρ* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACS:

the first acyl chain binding site

CEase:

cholesterol esterase

CRL:

Candida rugosa lipase

CS:

the catalytic side

δ:

the intensity factor of a reaction to the substituent steric effects

E:

enzyme

E s :

Taft steric substituent constant

E–I:

tetrahedral enzyme-inhibitor adduct

E:I:

non-covalent enzyme-inhibitor complex in the pre-steady state

E–I’:

carbamyl enzyme

I:

inhibitor

k 2 :

rate constant for formation of E–I from E:I in the pre-steady state

k −2 :

rate constant for re-dissociation of E–I to E:I in the pre-steady state

k c :

carbamylation constant or rate constant for the formation of E–I’ from E–I

k d :

decarbamylation or rate constant for hydrolysis of E–I’ to product

K i :

inhibition constant or dissociation constant of the steady state

k i :

bimolecular inhibition constant (=k c /k i )

K s :

dissociation constant of E:I in the pre-steady state (=k1/k−1)

OAH:

oxyanion hole

PCL:

Pseudomonas cepacia lipase

PSL:

Pseudomonas species lipase

PNPB:

p-nitrophenylbutyrate

QSAR:

quantitative structure-activity relationship

R:

correlation coefficient

ρ*:

intensity factor of a reaction to the substituent electronic effects

SACS:

the second acyl chain binding site

σ:

Hammett substituent constant

σ*:

Taft inductive substituent constant

TACS:

the third acyl chain binding site.

References

  • K. N. Allen R. H. Abeles (1989) Biochemistry 28 8466–8473 Occurrence Handle10.1021/bi00447a029 Occurrence Handle2605196

    Article  PubMed  Google Scholar 

  • P. Bar-On C. B. Millard M. Harel H. Dvir A. Enz J. L. Sussman I. Silman (2002) Biochemistry 41 3555–3564 Occurrence Handle10.1021/bi020016x Occurrence Handle11888271

    Article  PubMed  Google Scholar 

  • C. Bartolucci E. Perola L. Cellai M. Brufani D. Lamba (1999) Biochemistry 38 5714–5719 Occurrence Handle10.1021/bi982723p Occurrence Handle10231521

    Article  PubMed  Google Scholar 

  • W. Boland C. Fröβ1 N. Lorenz (1991) Synthesis 12 1049–1072 Occurrence Handle10.1055/s-1991-26680

    Article  Google Scholar 

  • K. Brady T.-C. Liang R. H. Abeles (1989) Biochemistry 28 9066–9070 Occurrence Handle10.1021/bi00449a017 Occurrence Handle2605240

    Article  PubMed  Google Scholar 

  • J.-F. Cavalier G. Buono R. Verger (2000) Acc. Chem. Res. 39 579–589 Occurrence Handle10.1021/ar990150i

    Article  Google Scholar 

  • J. C.-H. Chen L. J. W. Miercke J. Krucinski J. R. Starr G. Saenz X. Wang C. A. Spilburg L. G. Lange J. L. Ellsworth R. M. Stroud (1998) Biochemistry 37 5107–5117 Occurrence Handle10.1021/bi972989g Occurrence Handle9548741

    Article  PubMed  Google Scholar 

  • K. A. Connors (1990) Chemical Kinetics VCH Publisher New York, USA

    Google Scholar 

  • S. R. Feaster K. Lee N. Baker D. Y. Hui D. M. Quinn (1996) Biochemistry 35 16723–16734 Occurrence Handle10.1021/bi961677v Occurrence Handle8988009

    Article  PubMed  Google Scholar 

  • A. Fersht (1984) Enyme Structure and Mechanism EditionNumberSecond edition Freeman New York

    Google Scholar 

  • J.-D. Fourneron N. Abouakil C. Chaillan D. Lombardo (1991) Eur. J. Biochem. 196 295–303 Occurrence Handle10.1111/j.1432-1033.1991.tb15817.x Occurrence Handle2007401

    Article  PubMed  Google Scholar 

  • P. Grochulski F. Bouthillier R. J. Kazlauskas A. N. Serreqi J. D. Schrag E. Ziomek M. Cygler (1994) Biochemistry 33 3494–3500 Occurrence Handle10.1021/bi00178a005 Occurrence Handle8142346

    Article  PubMed  Google Scholar 

  • M. Harel D. M. Quinn H. K. Nair I Silman J. L. Sussman (1996) J. Am. Chem. Soc. 118 2340–2346 Occurrence Handle10.1021/ja952232h

    Article  Google Scholar 

  • G. J. Hart R. D. O’Brien (1974) Pesticide Biochem. Physiol. 4 239–244 Occurrence Handle10.1016/0048-3575(74)90103-5

    Article  Google Scholar 

  • L. Hosie L. D. Sutton D. M. Quinn (1987) J. Biol. Chem. 262 260–264 Occurrence Handle3793726

    PubMed  Google Scholar 

  • K. Ikeda S. Kunugi N. Ise (1982) Arch. Biochem. Biophys. 217 37–46 Occurrence Handle10.1016/0003-9861(82)90476-3 Occurrence Handle7125675

    Article  PubMed  Google Scholar 

  • B. Imperiali R. H. Abeles (1986) Biochemistry 25 3760–3767 Occurrence Handle10.1021/bi00361a005 Occurrence Handle3527255

    Article  PubMed  Google Scholar 

  • N. S. Isaacs (1995) Physical Organic Chemistry Longman Harlow, UK 146–192

    Google Scholar 

  • K. K. Kim H. K. Song D. H. Shin K. Y. Hwang S. W. Suh (1997) Structure 5 173–185 Occurrence Handle10.1016/S0969-2126(97)00177-9 Occurrence Handle9032073

    Article  PubMed  Google Scholar 

  • K. A. Koehler G. P. Hess (1974) Biochemistry 26 5345–5350 Occurrence Handle10.1021/bi00723a014

    Article  Google Scholar 

  • G. Kokotos S. Kotsovolou R. Verger (2003) ChemBioChem. 4 90–95 Occurrence Handle10.1002/cbic.200390019 Occurrence Handle12512081

    Article  PubMed  Google Scholar 

  • D. A. Lang M. L. M. Mannesse G. H. Haas ParticleDe H. M. Verheij B. W. Dijkstra (1998) Eur. J. Biochem. 254 333–340 Occurrence Handle10.1046/j.1432-1327.1998.2540333.x Occurrence Handle9660188

    Article  PubMed  Google Scholar 

  • G. Lin C.-Y. Lai (1995) Tetrahedron Lett. 36 6117–6120 Occurrence Handle10.1016/0040-4039(95)01233-8

    Article  Google Scholar 

  • G. Lin C.-Y. Lai (1996) Tetrahedron Lett. 37 193–196 Occurrence Handle10.1016/0040-4039(95)02126-4

    Article  Google Scholar 

  • G. Lin C.-T Shieh H.-C. Ho J.-Y. Chouhwang W.-Y. Lin C.-P. Lu (1999a) Biochemistry 38 9971–9981 Occurrence Handle10.1021/bi982775e

    Article  Google Scholar 

  • G. Lin C.-T. Shieh Y.-C. Tsai C.-I. Hwang C.-P. Lu G.-H. Chen (1999b) Biochim. Biophys. Acta. 1431 500–511

    Google Scholar 

  • G. Lin C.-Y Lai W.-C. Liao (1999c) Bioorg. Med. Chem. 7 2683–2689 Occurrence Handle10.1016/S0968-0896(99)00213-8

    Article  Google Scholar 

  • G. Lin W.-C. Liao S.-Y. Chiou (2000a) Bioorg. Med. Chem. 8 2601–2607 Occurrence Handle10.1016/S0968-0896(00)00196-6

    Article  Google Scholar 

  • G. Lin C.-Y. Lai W.-C. Liao B.-H. Kuo C.-P. Lu (2000b) J. Chin. Chem. Soc. 47 489–500

    Google Scholar 

  • G. Lin J.-Y. Chouhwang (2001) J. Biochem. Mol. Biol. Biophys. 5 301–308

    Google Scholar 

  • G. Lin Y.-C. Liu Y.-G. Wu Y.-R. Lee (2003a) QSAR Com. Sci. 22 852–858 Occurrence Handle10.1002/qsar.200330827

    Article  Google Scholar 

  • G. Lin C.-Y. Lai W.-C. Liao B.-H. Liao C. P. Lu (2003b) J. Chin. Chem. Soc. 50 1259–1265

    Google Scholar 

  • G. Lin (2004) J. Chin. Chem. Soc. 51 423–430

    Google Scholar 

  • G. Lin Y.-C. Liu Y.-G. Wu Y.-R. Lee (2004a) J. Phys. Org. Chem. 17 707–714 Occurrence Handle10.1002/poc.740

    Article  Google Scholar 

  • G. Lin Y.-C. Liu Y.-F. Lin Y.-G. Wu (2004b) J. Enzy. Inh, Med. Chem. 19 395–401

    Google Scholar 

  • G. Lin W.-C. Liao C.-H. Chan Y.-H. Wu H.-J. Tsai C.-W. Hsieh (2004c) J. Biochem. Mol. Toxicol. 18 353–360 Occurrence Handle10.1002/jbt.20045

    Article  Google Scholar 

  • T. H. Lowry K. S. Richardson (1987) Mechanism and Theory in Organic Chemistry EditionNumberThird edition Harper and Row New York, USA 212–214

    Google Scholar 

  • H. Nakatani Y. Uehara K. Hiromi (1975a) J. Biochem. 78 611–616

    Google Scholar 

  • H. Nakatani K. Hanai Y. Uehara K. Hiromi (1975b) J. Biochem. 78 905–908

    Google Scholar 

  • H. Nakatani H. Fujiwake K. Hiromi (1977) J. Biochem. 81 1269–1272 Occurrence Handle19429

    PubMed  Google Scholar 

  • H. Nakatani T. Morita K. Hiromi (1978) Arch. Biochem. Biophys. 525 423–428

    Google Scholar 

  • D. L. Ollis E. Shea M. Cygler B. Dijstra F. Frolow S. M. Franken M. Harel S. J. Remington I. Silman J. Schrag J. L. Sussman K. H. G. Verschueren A. Goldman (1992) Protein Eng. 5 197–211 Occurrence Handle1409539

    PubMed  Google Scholar 

  • J. D. Schrag Y. Li M. Cygler D. Lang T. Burgdorf H.-J. Hecht R. Schmid D. Schomburg T. J. Rydel J. D. Oliver L. C. Strickland C. M. Dunaway S. B. Larson J. Day A. McPherson (1997) Structure 5 187–202 Occurrence Handle10.1016/S0969-2126(97)00178-0 Occurrence Handle9032074

    Article  PubMed  Google Scholar 

  • P. Seufer-Wasserthal V. Martichonok T. H. Keller B. Chin R. Martin J. B. Jones (1994) Biorg. Med. Chem. 2 35–48 Occurrence Handle10.1016/S0968-0896(00)82200-2

    Article  Google Scholar 

  • J.-W. F. A. Simons J.-W. P. Boots M. P. Kats A. J. Slotboom M. R. Egmond H. M. Verheij (1997) Biochemistry 36 14539–14550 Occurrence Handle10.1021/bi9713714 Occurrence Handle9398172

    Article  PubMed  Google Scholar 

  • J. Simpelkamp J. B. Jones (1992) Bioorg. Med. Chem Lett. 2 1391–1394 Occurrence Handle10.1016/S0960-894X(00)80519-3

    Article  Google Scholar 

  • J. Sohl L. D. Sutton D. J. Burton D. M. Quinn (1988) Biochem. Biophys. Res. Commun. 151 554–560 Occurrence Handle3348795

    PubMed  Google Scholar 

  • S. J. Steiner J. T. Bien B. D. Smith (1994) Bioorg. Med. Chem. Lett. 4 2417–2420 Occurrence Handle10.1016/S0960-894X(01)80401-7

    Article  Google Scholar 

  • J. L. Sussman M. Harel F. Frolow C. Oefner A. Goldman L. Toker I. Silman (1991) Science 253 872–879 Occurrence Handle1678899

    PubMed  Google Scholar 

  • Svendsen A., (1994). In: Woolley P., Petersen S.B., (eds.), Lipases. Their Structure Biochemistry and Application. Cambridge University Press, Cambridge, pp. 1–21

  • F. Theil (1995) Chem. Rev. 95 2203–2227 Occurrence Handle10.1021/cr00038a017

    Article  Google Scholar 

  • H. Tilbeurgh Particlevan M.-P. Egloff C. Martinez N. Rugani R. Verger C. Cambillau (1993) Nature 362 814–820 Occurrence Handle10.1038/362814a0 Occurrence Handle8479519

    Article  PubMed  Google Scholar 

  • X. Wang C.-S. Wang J. Tang F. Dyda X. C. Zhang (1997) Structure 5 1209–1218 Occurrence Handle10.1016/S0969-2126(97)00271-2 Occurrence Handle9331420

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gialih Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, G., Liao, WC. & Ku, ZH. Quantitative Structure-Activity Relationships for the Pre-Steady State of Pseudomonas Species Lipase Inhibitions by p-Nirophenyl-N-Substituted Carbamates. Protein J 24, 1–7 (2005). https://doi.org/10.1007/s10930-005-6712-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-005-6712-5

Key words

Navigation