Skip to main content

Advertisement

Log in

Structure–Function Relationship of New Crotamine Isoform from the Crotalus durissus cascavella

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 Da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7–3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic β-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. L. Anderson N. G. Anderson (1991) Electrophoresis 12 883–906

    Google Scholar 

  • F. M. Ashcroft (1988) Rev. Neurosci. 11 97–118 Occurrence Handle10.1146/annurev.ne.11.030188.000525

    Article  Google Scholar 

  • B. Baker P. Utaisincharoen A. T. Tu (1992) Arch. Biochem. Biophys. 298 325–331 Occurrence Handle10.1016/0003-9861(92)90418-V

    Article  Google Scholar 

  • A. L. Bieber R. H. McParland R. R. Becker (1987) Toxicon 25: 677–680 Occurrence Handle10.1016/0041-0101(87)90115-2

    Article  Google Scholar 

  • A. L. Bieber D. Nedelkov (1997) J. Toxicol. Toxin Rev. 16 33–52

    Google Scholar 

  • D. L. Cameron A. T. Tu (1978) Biochem. Biophys. Acta 532 147–154

    Google Scholar 

  • N. J. Caron Y. Torrente G. Camirand M. Bujold P. Chapdelaine K. Leriche et al. (2001) Mol. Ther. 3 310–318 Occurrence Handle10.1006/mthe.2001.0279

    Article  Google Scholar 

  • S. Cestele W. A. Catterall (2000) Biochimie 82 883–892 Occurrence Handle10.1016/S0300-9084(00)01174-3

    Article  Google Scholar 

  • C. M. Dawson P. Lebrun A. Herchuelz W. J. Malaisse A. A. Gonçalves I. Atwater (1986) Horm. Metab. Res. 18 221–224

    Google Scholar 

  • D. Derossi G. Chassaing A. Prochiantz (1998) Trends Cell Biol. 8 84–87 Occurrence Handle10.1016/S0962-8924(97)01214-2

    Article  Google Scholar 

  • D. Derossi A. H. Joliot G. Chassaing A. Prochiantz (1994) J. Biol. Chem. 269 10444–10450

    Google Scholar 

  • M. Dilber A. Phelan A. Aints A. Mohamed G. Elliott C. Edvard Smith et al. (1999) Gene Ther. 6 12–21 Occurrence Handle10.1038/sj.gt.3300838

    Article  Google Scholar 

  • J. L. Dimarcq P. Bulet C. Hetru J. Hoffmann (1998) Biopolymers 47 465–477 Occurrence Handle10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#

    Article  Google Scholar 

  • P. Donatsch D. Lower B. P. Richardson P. Taylor (1977) J. Physiol. 267 357–376

    Google Scholar 

  • M. C. Dos Santos L. C. Ferreira W. D. Da Silva M. F. Furtado (1993) Toxicon 31 1459–1469 Occurrence Handle10.1016/0041-0101(93)90211-Z

    Article  Google Scholar 

  • G. Elliott P. O9Hare (1997) Cell 88 223–233 Occurrence Handle10.1016/S0092-8674(00)81843-7

    Article  Google Scholar 

  • S. Fawell J. Seery Y. Daikh C. Moore L. L. Chen B. Pepinsky et al. (1994) Proc. Natl. Acad. Sci. USA 91 664–668

    Google Scholar 

  • K. G. Ford D. Darling B. Souberbielle F. Farzaneh (2000) Mech. Ageing Dev. 121 113–121 Occurrence Handle10.1016/S0047-6374(00)00202-5

    Article  Google Scholar 

  • J. W. Fox M. Elzinga A. T. Tu (1979) Biochemistry 18 678–684

    Google Scholar 

  • A. Frankel C. Pabo (1988) Cell 55 1189–1193 Occurrence Handle10.1016/0092-8674(88)90263-2

    Article  Google Scholar 

  • S. Futaki T. Suzuki W. Ohashi T. Yagami S. Tanaka K. Ueda et al. (2001) J. Biol. Chem. 276 5836–5840 Occurrence Handle10.1074/jbc.M007540200

    Article  Google Scholar 

  • M. Green P. M. Loewenstein (1988) Cell 55 1179–1188 Occurrence Handle10.1016/0092-8674(88)90262-0

    Article  Google Scholar 

  • J. Hawiger (1999) Curr. Opin. Chem. Biol. 3 89–94 Occurrence Handle10.1016/S1367-5931(99)80016-7

    Article  Google Scholar 

  • J. C. Hequin (1987) Horm. Res. 27 168–178

    Google Scholar 

  • M. Hiriat D. R. Matteson (1988) J. Gen. Physiol. 91 617–639 Occurrence Handle10.1085/jgp.91.5.617

    Article  Google Scholar 

  • C. J. Laure (1975) Hoppe Seylers Z. Physiol. Chem. 356 213–215

    Google Scholar 

  • N. Maeda N. Tamiya T. R. Pattabhiraman F. E. Russel (1978) Toxicon 16 431–441 Occurrence Handle10.1016/0041-0101(78)90140-X

    Article  Google Scholar 

  • S. Marangoni M. H. Toyama E. C. Arantes J. R. Giglio C. A. Da Silva E. M. Carneiro et al. (1995) Biochim. Biophys. Acta 1243 309–314

    Google Scholar 

  • S. Misler D. W. Barnett K. D. Gillis D. M. Pressel (1992) Diabetes 41 1221–1228

    Google Scholar 

  • M. C. Morris L. Chaloin F. Heitz G. Divita (2000) Curr. Opin. Biotechnol. 11 461–466 Occurrence Handle10.1016/S0958-1669(00)00128-2

    Article  Google Scholar 

  • G. Nicastro L. Franzoni C. de Chiara A. C. Mancin J. R. Giglio A. Spisni (2003) Eur. J. Biochem. 270 1969–1979 Occurrence Handle10.1046/j.1432-1033.2003.03563.x

    Article  Google Scholar 

  • G. Rádis-Baptista N. Oguiura M. A. F. Hayashi M. E. Camargo K. F. Grego E. B. Oliveira et al. (1999) Toxicon 37 973–984 Occurrence Handle10.1016/S0041-0101(98)00226-8

    Article  Google Scholar 

  • Y. Samejima Y. Aoki D. Mebs (1991) Toxicon 29 461–468 Occurrence Handle10.1016/0041-0101(91)90020-R

    Article  Google Scholar 

  • S. R. Schwarze A. Ho A. Vocero-Akbani S. F. Dowdy (1999) Science 285 1569–1572 Occurrence Handle10.1126/science.285.5433.1569 Occurrence Handle1:CAS:528:DyaK1MXlslOru78%3D Occurrence Handle10477521

    Article  CAS  PubMed  Google Scholar 

  • S. R. Schwarze K. A. Hruska S. F. Dowdy (2000) Trends Cell Biol. 10 290–296 Occurrence Handle10.1016/S0962-8924(00)01771-2

    Article  Google Scholar 

  • J. Sehlin I. B. Taljedal (1974) J. Physiol. 242 505–515

    Google Scholar 

  • L. A. Smith J. J. Schmidt (1990) Toxicon 28 575–585 Occurrence Handle10.1016/0041-0101(90)90302-N

    Article  Google Scholar 

  • A. M. Soares J. R. Giglio (2003) Toxicon 42 855–868 Occurrence Handle10.1016/j.toxicon.2003.11.004

    Article  Google Scholar 

  • A. M. Soares W. P. Sestito S. Marcussi R. G. Stabeli S. H. Andriao-Escarso O. A. Cunha et al. (2004) Int. J. Biochem. Cell Biol. 36 258–270 Occurrence Handle10.1016/S1357-2725(03)00237-1

    Article  Google Scholar 

  • M. H. Toyama E. M. Carneiro S. Marangoni R. L. Barbosa G. Corso A. C. Boschero (2000) Biochim. Biophys. Acta 1474 56–60

    Google Scholar 

  • M. H. Toyama A. M. Soares S. H. Andrião-Escarso J. C. Novello B. Oliveira J. R. Giglio et al. (2001a) Protein and Peptide Letters 8 179–786

    Google Scholar 

  • M. H. Toyama E. M. Carneiro S. Marangoni M. E. C. Amaral L. A. Velloso A. C. Boschero (2001b) J. Protein Chem. 20 585–591 Occurrence Handle10.1023/A:1013377331569

    Article  Google Scholar 

  • M. H. Toyama S. Marangoni J. C. Novello G. B. Leite Prado-Franceshi M. A. Cruz-Höfling et al. (2003) Toxicon 41 493–500 Occurrence Handle10.1016/S0041-0101(02)00390-2

    Article  Google Scholar 

  • E. Vivés P. Brodin B. Lebleu (1997) J.Biol. Chem. 272 16010–16017 Occurrence Handle10.1074/jbc.272.25.16010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Toyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyama, D.O., Boschero, A.C., Martins, M.A. et al. Structure–Function Relationship of New Crotamine Isoform from the Crotalus durissus cascavella. Protein J 24, 9–19 (2005). https://doi.org/10.1007/s10930-004-0601-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-004-0601-1

Keywords

Navigation