Skip to main content
Log in

A quantitative systems pharmacology model for simulating OFF-Time in augmentation trials for Parkinson’s disease: application to preladenant

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The clinical impact of therapeutic interventions in Parkinson’s disease is often measured as a reduction in OFF-time when the beneficial effects of the standard-of-care L-DOPA formulations wanes off. We investigated the pharmacodynamic interactions of augmentation therapy to standard-of-care using a quantitative systems pharmacology (QSP) model of the basal ganglia motor circuit, essentially a computer model of neuronal firing in the different subregions with anatomically informed connectivity, cell-specific expression of 17 different G-protein coupled receptors and corresponding coupling to voltage-gated ion channel effector proteins based on experimentally observed intracellular signaling. The calculated beta/gamma (b/g) power spectrum of the local field potentials in the subthalamic nucleus was previously calibrated on the clinically relevant Unified Parkinson’s Disease Rating Scale (UPDRS). When combining this QSP model with PK modeling of different formulations of L-DOPA, we calculated the b/g fluctuations over a 16 h awake period and used a weighted distance from a specific threshold to determine the cumulative liability of OFF-Time. Prediction of OFF-time with clinical observations of different L-DOPA formulations showed a significant correlation. Simulations show that augmentation with the adenosine A2A antagonist preladenant reduces OFF-time with 6 min for carbidopa/levodopa 950 mg 5-times daily to 37 min for 100 mg L-DOPA – 3 or 5 times daily. Exploring delays between preladenant and L-DOPA intake did not improve the outcome. Hypothetical A2A antagonists with an ideal PK and pharmacology profile can achieve OFF-Time reductions ranging from 9.5 min with DuoDopa to 55 min with low dose L-DOPA formulations. Combination of the QSP model with PK modeling can predict the anticipated OFF-Time reduction of novel A2A antagonists with standard of care. With the large number of GPCR in the model, this combination can support both the design of clinical trials with new therapeutic agents and the optimization of combination therapy in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A1:

Adenosine 1 receptor

A2A:

Adenosine 2A receptor

AUC:

Area-under-the-curve (for PK profile)

cAMP:

Cyclic adenosine-mono-phosphate (intracellular second messenger)

GPe:

Globus Pallidus pars externa

GPe:

Globus Pallidus pars interna

MSN:

Medium spiny neurons (majority of striatal GABAergic neurons)

PD:

Parkinson’s disease

PET:

Positron emission tomography

PK:

Pharmacokinetics

Pyr:

Pyramidal neurons (located in the motor cortex)

QSP:

Quantitative systems pharmacology

Re:

Reticular neurons

STN:

Subthalamic nucleus

TC:

Thalamocortical neurons

UPDRS:

Unified Parkinson’s disease rating scale

References

  1. Jenner P (2014) An overview of adenosine A2A receptor antagonists in Parkinson’s disease. Int Rev Neurobiol 119:71–86. https://doi.org/10.1016/B978-0-12-801022-8.00003-9

    Article  PubMed  Google Scholar 

  2. Ferre S, Ciruela F (2019) Functional and neuroprotective role of striatal adenosine A2A receptor heterotetramers. J Caffeine Adenosine Res 9(3):89–97. https://doi.org/10.1089/caff.2019.0008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fernandez-Duenas V, Gomez-Soler M, Valle-Leon M, Watanabe M, Ferrer I, Ciruela F (2019) Revealing adenosine A2A-dopamine D2 receptor heteromers in Parkinson’s disease post-mortem brain through a new alphascreen-based assay. Int J Mol Sci. https://doi.org/10.3390/ijms20143600

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pintor A, Galluzzo M, Grieco R, Pezzola A, Reggio R, Popoli P (2004) Adenosine A 2A receptor antagonists prevent the increase in striatal glutamate levels induced by glutamate uptake inhibitors. J Neurochem 89(1):152–156. https://doi.org/10.1111/j.1471-4159.2003.02306.x

    Article  CAS  PubMed  Google Scholar 

  5. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457. https://doi.org/10.1002/ana.23951

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roberts P, Spiros A, Geerts H (2016) A humanized clinically calibrated quantitative systems pharmacology model for hypokinetic motor symptoms in Parkinson’s disease. Front Pharmacol 7:6. https://doi.org/10.3389/fphar.2016.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spiros A, Geerts H (2012) A quantitative way to estimate clinical off-target effects for human membrane brain targets in CNS research and development. J Exp Pharmacol 4:53–61. https://doi.org/10.2147/JEP.S30808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spiros A, Carr R, Geerts H (2010) Not all partial dopamine D(2) receptor agonists are the same in treating schizophrenia: exploring the effects of bifeprunox and aripiprazole using a computer model of a primate striatal dopaminergic synapse. Neuropsychiatr Dis Treat 6:589–603. https://doi.org/10.2147/NDT.S12460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pirini M, Rocchi L, Sensi M, Chiari L (2009) A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. J Comput Neurosci 26(1):91–107. https://doi.org/10.1007/s10827-008-0100-z

    Article  PubMed  Google Scholar 

  10. Spiros A, Roberts P, Geerts H (2012) A quantitative systems pharmacology computer model for schizophrenia efficacy and extrapyramidal side effects. Drug Dev Res 73(4):196–213. https://doi.org/10.1002/ddr.21008

    Article  CAS  Google Scholar 

  11. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18(16):6444–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235. https://doi.org/10.1023/B:JCNS.0000025686.47117.67

    Article  PubMed  Google Scholar 

  14. Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66(2):635–650

    Article  CAS  PubMed  Google Scholar 

  15. Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68(4):1373–1383

    Article  CAS  PubMed  Google Scholar 

  16. Destexhe A, Contreras D, Steriade M (1998) Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 79(2):999–1016

    Article  CAS  PubMed  Google Scholar 

  17. McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68(4):1384–1400

    Article  CAS  PubMed  Google Scholar 

  18. Huguenard JR, Coulter DA, Prince DA (1991) A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation. J Neurophysiol 66(4):1304–1315

    Article  CAS  PubMed  Google Scholar 

  19. Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 117(11):2424–2435. https://doi.org/10.1016/j.clinph.2006.06.75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, Benkelfat C (2007) Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci 27(15):3998–4003. https://doi.org/10.1523/JNEUROSCI.4370-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berardelli A, Wenning GK, Antonini A, Berg D, Bloem BR, Bonifati V, Brooks D, Burn DJ, Colosimo C, Fanciulli A, Ferreira J, Gasser T, Grandas F, Kanovsky P, Kostic V, Kulisevsky J, Oertel W, Poewe W, Reese JP, Relja M, Ruzicka E, Schrag A, Seppi K, Taba P, Vidailhet M (2013) EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 20(1):16–34. https://doi.org/10.1111/ene.12022

    Article  CAS  PubMed  Google Scholar 

  22. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67(9):1612–1617. https://doi.org/10.1212/01.wnl.0000242888.30755.5d

    Article  CAS  PubMed  Google Scholar 

  23. Barret O, Hannestad J, Alagille D, Vala C, Tavares A, Papin C, Morley T, Fowles K, Lee H, Seibyl J, Tytgat D, Laruelle M, Tamagnan G (2014) Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys. J Nucl Med 55(10):1712–1718. https://doi.org/10.2967/jnumed.114.142067

    Article  CAS  PubMed  Google Scholar 

  24. Hauser RA, Ellenbogen AL, Metman LV, Hsu A, O’Connell MJ, Modi NB, Yao HM, Kell SH, Gupta SK (2011) Crossover comparison of IPX066 and a standard levodopa formulation in advanced Parkinson’s disease. Mov Disord 26(12):2246–2252. https://doi.org/10.1002/mds.23861

    Article  PubMed  Google Scholar 

  25. Hauser RA, Hsu A, Kell S, Espay AJ, Sethi K, Stacy M, Ondo W, O’Connell M, Gupta S (2013) Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol 12(4):346–356. https://doi.org/10.1016/S1474-4422(13)70025-5

    Article  CAS  PubMed  Google Scholar 

  26. Stocchi F, Hsu A, Khanna S, Ellenbogen A, Mahler A, Liang G, Dillmann U, Rubens R, Kell S, Gupta S (2014) Comparison of IPX066 with carbidopa-levodopa plus entacapone in advanced PD patients. Parkinsonism Relat Disord 20(12):1335–1340. https://doi.org/10.1016/j.parkreldis.2014.08.004

    Article  PubMed  Google Scholar 

  27. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, Vanagunas A, Othman AA, Widnell KL, Robieson WZ, Pritchett Y, Chatamra K, Benesh J, Lenz RA, Antonini A, Group LHS (2014) Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13(2):141–149. https://doi.org/10.1016/S1474-4422(13)70293-X

    Article  CAS  PubMed  Google Scholar 

  28. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, Vanagunas A, Othman AA, Widnell KL, Robieson WZ, Pritchett Y, Chatamra K, Benesh J, Lenz RA, Antonini A (2014) Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 13(2):141–149. https://doi.org/10.1016/S1474-4422(13)70293-X

    Article  CAS  PubMed  Google Scholar 

  29. Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M, Japanese Istradefylline Study (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25(10):1437–1443. https://doi.org/10.1002/mds.23107

    Article  PubMed  Google Scholar 

  30. Mizuno Y, Kondo T, Japanese Istradefylline Study G (2013) Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord 28(8):1138–1141. https://doi.org/10.1002/mds.25418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, Huyck S, Wolski K (2011) Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10(3):221–229. https://doi.org/10.1016/S1474-4422(11)70012-6

    Article  CAS  PubMed  Google Scholar 

  32. Farzanehfar P, Woodrow H, Horne M (2021) Assessment of Wearing Off in Parkinson’s disease using objective measurement. J Neurol 268(3):914–922. https://doi.org/10.1007/s00415-020-10222-w

    Article  PubMed  Google Scholar 

  33. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt DJ (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88(23):2198–2206. https://doi.org/10.1212/WNL.0000000000004003

    Article  CAS  PubMed  Google Scholar 

  34. Hattori N, Kikuchi M, Adachi N, Hewitt D, Huyck S, Saito T (2016) Adjunctive preladenant: a placebo-controlled, dose-finding study in Japanese patients with Parkinson’s disease. Parkinsonism Relat Disord 32:73–79. https://doi.org/10.1016/j.parkreldis.2016.08.020

    Article  PubMed  Google Scholar 

  35. Guttman M, Burkholder J, Kish SJ, Hussey D, Wilson A, DaSilva J, Houle S (1997) [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson's disease: implications for the symptomatic threshold. Neurology 48(6):1578–1583. https://doi.org/10.1212/wnl.48.6.1578

  36. Veronneau-Veilleux F, Robaey P, Ursino M, Nekka F (2021) An integrative model of Parkinson’s disease treatment including levodopa pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor action throughout disease progression. J Pharmacokinet Pharmacodyn 48(1):133–148. https://doi.org/10.1007/s10928-020-09723-y

    Article  CAS  PubMed  Google Scholar 

  37. Veronneau-Veilleux F, Ursino M, Robaey P, Levesque D, Nekka F (2020) Nonlinear pharmacodynamics of levodopa through Parkinson’s disease progression. Chaos 30(9):093146. https://doi.org/10.1063/5.0014800

    Article  CAS  PubMed  Google Scholar 

  38. Baston C, Contin M, Calandra Buonaura G, Cortelli P, Ursino M (2016) A Mathematical model of levodopa medication effect on basal ganglia in Parkinson’s disease: an application to the alternate finger tapping task. Front Hum Neurosci 10:280. https://doi.org/10.3389/fnhum.2016.00280

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee JS, Lee SJ (2016) Mechanism of Anti-alpha-Synuclein Immunotherapy. J Move Disord 9(1):14–19. https://doi.org/10.14802/jmd.15059

    Article  Google Scholar 

  40. Kim CY, Alcalay RN (2017) Genetic forms of Parkinson’s disease. Semin Neurol 37(2):135–146. https://doi.org/10.1055/s-0037-1601567

    Article  PubMed  Google Scholar 

  41. Hill E, Gowers R, Richardson MJE, Wall MJ (2021) alpha-Synuclein Aggregates Increase the Conductance of Substantia Nigra Dopamine Neurons, an Effect Partly Reversed by the KATP Channel Inhibitor Glibenclamide. ENEURO. https://doi.org/10.1523/ENEURO.0330-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  42. Plowey ED, Johnson JW, Steer E, Zhu W, Eisenberg DA, Valentino NM, Liu YJ, Chu CT (2014) Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration. Biochem Biophys Acta 9:1596–1603. https://doi.org/10.1016/j.bbadis.2014.05.016

    Article  CAS  Google Scholar 

  43. Bedford C, Sears C, Perez-Carrion M, Piccoli G, Condliffe SB (2016) LRRK2 Regulates voltage-gated calcium channel function. Front Mol Neurosci 9:35. https://doi.org/10.3389/fnmol.2016.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sweet ES, Saunier-Rebori B, Yue Z, Blitzer RD (2015) The Parkinson’s disease-associated mutation LRRK2-G2019S impairs synaptic plasticity in mouse hippocampus. J Neurosci 35(32):11190–11195. https://doi.org/10.1523/JNEUROSCI.0040-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RR developed the PK model and RR and EM ran the simulations; EM developed the interface between the PK model and the QSP model; DT and JH provided key insights into defining the relation between the QSP biomarkers and the clinical presentation. PvdG and HG conceived and led the project and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hugo Geerts.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1241 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, R., Mitchell, E., Van Der Graaf, P. et al. A quantitative systems pharmacology model for simulating OFF-Time in augmentation trials for Parkinson’s disease: application to preladenant. J Pharmacokinet Pharmacodyn 49, 593–606 (2022). https://doi.org/10.1007/s10928-022-09825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09825-9

Keywords

Navigation