Skip to main content

Advertisement

Log in

Optimum multi-drug regime for compartment model of tumour: cell-cycle-specific dynamics in the presence of resistance

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This work is focused on multi-objective optimisation of a multi-drug chemotherapy schedule for cell-cycle-specific cancer treatment under the influence of drug resistance. The acquired drug resistance to chemotherapeutic agents is incorporated into the existing compartmental model of breast cancer. Furthermore, the toxic effect of drugs on healthy cells and overall drug concentration in the patient body are also constrained in the proposed model. The objective is to determine the optimal drug schedule according to the patient’s physiological condition so that the tumour burden is minimised. A multi-objective optimisation algorithm, non-dominated sorting genetic algorithm-II (NSGA-II) is utilised to solve the problem. The obtained results are thoroughly analysed to illustrate the impact of drug resistance on the treatment. The capability of optimised schedules to deal with parametric uncertainty is also analysed. The drug schedules obtained in this work align well with the clinical standards. It is also revealed that the NSGA-II optimised drug schedule with proper rest period between successive dosages yields the minimum cancer load at the end of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fuentes-Garí M, Misener R, Georgiadis MC, Kostoglou M, Panoskaltsis N, Pistikopoulos EN, Mantalaris A (2015) Chemotherapy optimization in leukemia: selecting the right mathematical models for the right biological processes∗. IFAC-PapersOnLine 48(20):534–539

    Google Scholar 

  2. Martin RB (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica 28(6):1113–1123

    Google Scholar 

  3. Liang Y, Leung K-S, Mok TSK (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans Inf Technol Biomed 10(2):237–245

    PubMed  Google Scholar 

  4. Swan GW (1990) Role of optimal control theory in cancer chemotherapy. Math Biosci 101(2):237–284

    CAS  PubMed  Google Scholar 

  5. Shi J, Alagoz O, Erenay FS, Su Q (2014) A survey of optimization models on cancer chemotherapy treatment planning. Ann Oper Res 221(1):331–356

    Google Scholar 

  6. Panetta JC, Adam J (1995) A mathematical model of cycle-specific chemotherapy. Math Comput Model 22(2):67–82

    Google Scholar 

  7. Dua P, Dua V, Pistikopoulos EN (2008) Optimal delivery of chemotherapeutic agents in cancer. Comput Chem Eng 32(1–2):99–107

    CAS  Google Scholar 

  8. Panjwani B, Mohan V, Rani A, Singh V (2019) Optimal drug scheduling for cancer chemotherapy using two degree of freedom fractional order PID scheme. J Intell Fuzzy Syst 36(3):2273–2284

    Google Scholar 

  9. Khadraoui S, Harrou F, Nounou HN, Nounou MN, Datta A, Bhattacharyya SP (2016) A measurement-based control design approach for efficient cancer chemotherapy. Inf Sci 333:108–125

    Google Scholar 

  10. Pachauri N, Yadav J, Rani A, Singh V (2019) Modified fractional order IMC design based drug scheduling for cancer treatment. Comput Biol Med 109:121–137

    PubMed  Google Scholar 

  11. Algoul S, Alam MS, Hossain MA, Majumder M (2010) Feedback control of chemotherapy drug scheduling for phase specific cancer treatment. In: 2010 IEEE fifth international conference on bio-inspired computing: theories and applications (BIC-TA). IEEE, pp 1443–1450

  12. Alam MS, Hossain MA, Algoul S, Majumader M, Al-Mamun M, Sexton G, Phillips R (2013) Multi-objective multi-drug scheduling schemes for cell cycle specific cancer treatment. Comput Chem Eng 58:14–32

    CAS  Google Scholar 

  13. Coley HM (2008) Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34(4):378–390

    CAS  PubMed  Google Scholar 

  14. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    CAS  PubMed  Google Scholar 

  15. Panetta JC (1998) A mathematical model of drug resistance: heterogeneous tumors. Math Biosci 147(1):41–61

    CAS  PubMed  Google Scholar 

  16. Boldrini JL, Costa MI (2000) Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy. Math Med Biol: J IMA 17(1):33–51

    CAS  Google Scholar 

  17. Eigenmann MJ, Frances N, Lavé T, Walz A-C (2017) PKPD modeling of acquired resistance to anti-cancer drug treatment. J Pharmacokinet Pharmacodyn 44(6):617–630

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Costa M, Boldrini J (1997) Conflicting objectives in chemotherapy with drug resistance. Bull Math Biol 59(4):707–724

    CAS  PubMed  Google Scholar 

  19. Shigeoka Y, Itoh K, Igarashi T, Ishizawa K, Saeki T, Fujii H, Minami H, Imoto S, Sasaki Y (2001) Clinical effect of irinotecan in advanced and metastatic breast cancer patients previously treated with doxorubicin-and docetaxel-containing regimens. Jpn J Clin Oncol 31(8):370–374

    CAS  PubMed  Google Scholar 

  20. Vainas O, Ariad S, Amir O, Mermershtain W, Vainstein V, Kleiman M, Inbar O, Ben-Av R, Mukherjee A, Chan S (2012) Personalising docetaxel and G-CSF schedules in cancer patients by a clinically validated computational model. Br J Cancer 107(5):814–822

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin R, Teo K (1994) Optimal control of drug administration in cancer chemotherapy. World Scientific, Singapore

    Google Scholar 

  22. Westman J, Fabijonas B, Kern D, Hanson F (2002) Cancer treatment using multiple chemotherapeutic agents subject to drug resistance. In: Proceedings of the 15th international symposium of mathematical theory of networks and systems. Citeseer

  23. Michor F, Beal K (2015) Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort. Cell 163(5):1059–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Clarke SJ, Rivory LP (1999) Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 36(2):99–114

    CAS  PubMed  Google Scholar 

  25. Bruno R, Vivier N, Vergniol JC, De Phillips SL, Montay G, Sheiner LB (1996) A population pharmacokinetic model for docetaxel (taxotere®): model building and validation. J Pharmacokinet Biopharm 24(2):153–172

    CAS  PubMed  Google Scholar 

  26. Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33(4):245–259

    CAS  PubMed  Google Scholar 

  27. Gardner SN (2002) Cell cycle phase-specific chemotherapy: computation methods for guiding treatment. Cell Cycle 1(6):369–374

    CAS  PubMed  Google Scholar 

  28. Skipper HE, Schabel FM Jr, Mellett LB, Montgomery JA, Wilkoff LJ, Lloyd HH, Brockman RW (1970) Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep 54(6):431–450

    CAS  PubMed  Google Scholar 

  29. Bruce W, Meeker B, Valeriote F (1966) Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 37(2):233–245

    CAS  PubMed  Google Scholar 

  30. Foo J, Michor F (2014) Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 355:10–20

    PubMed  Google Scholar 

  31. Tse S-M, Liang Y, Leung K-S, Lee K-H, Mok TS-K (2007) A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization. IEEE Trans Syst Man Cybern Part B 37(1):84–91

    Google Scholar 

  32. Chhabra H, Mohan V, Rani A, Singh V (2020) Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator. Neural Comput Appl 32(7):2055–2079. https://doi.org/10.1007/s00521-019-04074-3

    Article  Google Scholar 

  33. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  34. Mohan V, Chhabra H, Rani A, Singh V (2019) An expert 2DOF fractional order fuzzy PID controller for nonlinear systems. Neural Comput Appl 31(8):4253–4270

    Google Scholar 

  35. Mohan V, Chhabra H, Rani A, Singh V (2018) Robust self-tuning fractional order PID controller dedicated to non-linear dynamic system. J Intell Fuzzy Syst 34(3):1467–1478

    Google Scholar 

  36. Rodríguez-Molina A, Mezura-Montes E, Villarreal-Cervantes MG, Aldape-Pérez M (2020) Multi-objective meta-heuristic optimization in intelligent control: a survey on the controller tuning problem. Appl Soft Comput 93:

    Google Scholar 

  37. Moore H (2018) How to mathematically optimize drug regimens using optimal control. J Pharmacokinet Pharmacodyn 45(1):127–137

    PubMed  PubMed Central  Google Scholar 

  38. Lin S (2020) NGPM—A NSGA-II Program in Matlab v1.4 (https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4). MATLAB Central File Exchange

  39. Lordick F, Von Schilling C, Bernhard H, Hennig M, Bredenkamp R, Peschel C (2003) Phase II trial of irinotecan plus docetaxel in cisplatin-pretreated relapsed or refractory oesophageal cancer. Br J Cancer 89(4):630–633

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiura K, Takigawa N, Segawa Y, Tabata M, Shibayama T, Gemba K, Bessho A, Fujimoto N, Takata I, Hotta K (2007) Triple combination chemotherapy with cisplatin, docetaxel, and irinotecan for advanced non-small cell lung cancer: a phase I/II trial. J Thoracic Oncol 2(1):44–50

    Google Scholar 

  41. Tan W, Hillman D, Salim M, Northfelt DW, Anderson D, Stella P, Niedringhaus R, Bernath A, Gamini S, Palmieri F (2010) N0332 phase 2 trial of weekly irinotecan hydrochloride and docetaxel in refractory metastatic breast cancer: a North Central Cancer Treatment Group (NCCTG) Trial. Ann Oncol 21(3):493–497

    CAS  PubMed  Google Scholar 

  42. Burtness B, Powell M, Catalano P, Berlin J, Liles DK, Chapman AE, Mitchell E, Benson AB (2016) Randomized phase II trial of irinotecan/docetaxel or irinotecan/docetaxel plus cetuximab for metastatic pancreatic cancer: an eastern cooperative oncology group study. Am J Clin Oncol 39(4):340

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adjei AA, Klein CE, Kastrissios H, Goldberg RM, Alberts SR, Pitot HC, Sloan JA, Reid JM, Hanson LJ, Atherton P (2000) Phase I and pharmacokinetic study of irinotecan and docetaxel in patients with advanced solid tumors: preliminary evidence of clinical activity. J Clin Oncol 18(5):1116

    CAS  PubMed  Google Scholar 

  44. Goldie J, Coldman A (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727

    CAS  PubMed  Google Scholar 

  45. Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61(7):1307–1317

    CAS  PubMed  Google Scholar 

  46. Pannell DJ (1997) Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agric Econ 16(2):139–152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Mohan.

Ethics declarations

Conflict of interest

It is hereby announced that there is no conflict of interest between authors and to anybody else.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjwani, B., Singh, V., Rani, A. et al. Optimum multi-drug regime for compartment model of tumour: cell-cycle-specific dynamics in the presence of resistance. J Pharmacokinet Pharmacodyn 48, 543–562 (2021). https://doi.org/10.1007/s10928-021-09749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-021-09749-w

Keywords

Navigation