Skip to main content

Advertisement

Log in

Diffusion through skin in the light of a fractional derivative approach: progress and challenges

  • Review Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

This review is focussed on modelling the transport processes of different drugs across the intact human skin by introducing a memory formalism based on the fractional derivative approach. The fundamental assumption of the classic transport equation in the light of the Fick’s law is that the skin barrier behaves as a pseudo-homogeneous membrane and that its properties, summarized by the diffusion coefficient D,  do not vary with time and position. This assumption does not hold in the case of a highly heterogeneous system as the skin is, whose outermost layer (the stratum corneum) is comprised of a multi-layered structure of keratinocytes embedded in a lamellar matrix of hydrophobic lipids, followed by the dermis that contains a network of capillaries that connect to the systemic circulation. A possible way to overcome these difficulties resides in the introduction of mathematical models which involve fractional derivatives to describe complex systems with interactions in space and time, following the model originally developed by Caputo in order to consider the memory effects in materials. Although the introduction of fractional derivatives to model memory effects is completely phenomenological, i.e., characterized by a single parameter, i.e., the fractional derivative order \(\nu ,\) a number of authors have found that this approach can provide a better comparison to experimental data and that this technique may be alternative to integer-order derivative models. In this review, we aim to summarize some our recent results, concerning the transport of different diffusing compounds of different structural complexity across the intact skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Podlubny I (2004) Fractional differential equations. Academic, San Diego

    Google Scholar 

  2. Kiryakova VS (1994) Generalized fractional calculus and applications. Longman Scientific and Technical, Harlow

    Google Scholar 

  3. Caputo M, Fabrizio M (2015) Admissible frequency domain response function of dielectrics. Math Methods Appl Sci 38:930–936

    Google Scholar 

  4. Le Mehaute A, Crepy G (1983) Introduction to transfer motion in fractal media: the geometry of kinetics. Solid State Ion 9(10):17–30

    Google Scholar 

  5. Kornig M, Muller G (1989) Rheological model and interpretation of postglacial uplift. Geophys J Int 98:243–267

    Google Scholar 

  6. Di Giuseppe E, Moroni M, Caputo M (2010) Flux in porous media with memory: models and experiments. Transp Porous Media 83:479–500

    Google Scholar 

  7. Mainardi F, Raberto M, Gorenflo R, Scalas E (2000) Fractional calculus and continuous-time finance: II. The waiting time distribution. Physica A 287:468–481

    Google Scholar 

  8. Hilfer R (2002) Experimental evidence for fractional time evaluation in glass forming materials. Chem Phys 284:339–408

    Google Scholar 

  9. Caputo M (2012) The memory response of population or markets to extreme events. Econ Polit 2:261–282

    Google Scholar 

  10. Caputo M (2014) Alternative public economics. Elgar, Cheltenham

    Google Scholar 

  11. Caputo M (1967) Linear models of dissipation whose q is almost frequency independent. Geophys Int J 13:529–539

    Google Scholar 

  12. Kaminski LE, Evangelista LR (2018) Fractional diffusion equations and anomalous diffusion. Cambridge University Press, Cambridge

    Google Scholar 

  13. Deng W, Hou R, Wang W, Xu P (2019) Modeling anomalous diffusion: from statistics to mathematics. World Scientific, Hackensack

    Google Scholar 

  14. Sopasakis P, Sarimueis H, Macheras P, Dokoumetzidis A (2018) Fractional calculus in pharmacokinetics. J Pharmacokinet Pharmacodyn 45:107–125

    CAS  PubMed  Google Scholar 

  15. Dokoumetzidis A, Macheras P (2009) Fractional kinetics in drug adsorption and disposition processes. J Pharmacokinet Pharmacodyn 36:165–178

    CAS  PubMed  Google Scholar 

  16. Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    CAS  PubMed  Google Scholar 

  17. Macheras P (1996) A fractal approach to heterogeneous drug distribution: calcium pharmacokinetics. Pharm Res 13:663–670

    CAS  PubMed  Google Scholar 

  18. Pereira L (2010) Fractal pharmacokinetics. Comput Math Methods Med 11:161–184

    PubMed  Google Scholar 

  19. Dokoumetzidis A, Magin R, Macheras P (2010) Fractional kinetics in multicompartimental systems. J Pharmacokinet Pharmacodyn 37:507–524

    PubMed  Google Scholar 

  20. Anassimov YG, Watkinson A (2013) A modelling skin penetration using the Laplace transform technique. Skin Pharmacol Physiol 26:286–294

    Google Scholar 

  21. Fernandes M, Simon L, Loney N (2005) Mathematical modeling of transdermal delivery system: analysis and applications. J Membr Sci 256:184–192

    CAS  Google Scholar 

  22. Selzer D, Neumann D, Schaefer UF (2015) Mathematical models for dermal drug absorption. Expert Opin Drug Metab Toxicol 11:1–17

    Google Scholar 

  23. Rice RG, Do DD (1995) Applied mathematics and modeling for chemical engineering. Wiley, New York

    Google Scholar 

  24. Zakian V (1969) Numerical inversion of Laplace transform. Electron Lett 5:120–121

    Google Scholar 

  25. Halsted DJ, Brown D (1972) Zakian’s technique for inverting Laplace transform. Chem Eng J 3:312–313

    CAS  Google Scholar 

  26. Amarah AA, Pethlin DG, Grice JE, Hadgraft J, Roberts MS, Anissimov YG (2018) Compartimental modeling of skin transport. Eur J Pharm Biopharm 130:336–344

    CAS  PubMed  Google Scholar 

  27. Heymans N, Podlubny P (2006) Physical interpretation of the initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol Acta 45:765–771

    CAS  Google Scholar 

  28. Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147

    Google Scholar 

  29. West B (2010) Fractal physiology and the fractional calculus: a perspective. Front Physiol 1:1–17

    PubMed  PubMed Central  Google Scholar 

  30. Zhou HW, Yang S, Zhang SQ (2018) Conformable derivation approach to anomalous diffusion. Physica A 491:1001–1013

    CAS  Google Scholar 

  31. Diethelm K (2010) The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Generalized fractional calculus and applications. Springer, Berlin

    Google Scholar 

  32. Tateishi A, Ribeiro HV, Lenzi EK (2017) The role of the fractional time-derivative operators in anomalous diffusion. Front Phys 5:1–5

    Google Scholar 

  33. Caputo M, Cametti C (nd) Permeation of water through the stratum corneum. A mathematical model based on diffusion with memory. In: 10th IEEE/ASME international conference on mechatronic and embedded systems and application

  34. Caputo M, Cametti C (2009) The memory formalism in the diffusion of drugs through skin membrane. J Phys D 42:125505

    Google Scholar 

  35. Cesarone F, Caputo M, Cametti C (2005) Memory formalism in the passive diffusion across highly heterogeneous systems. J Membr Sci 250:79–84

    CAS  Google Scholar 

  36. Caputo M, Cametti C, Ruggero V (2008) Time and spatial concentration profile inside a membrane by means of a memory formalism. Physica A 387:2010–2018

    CAS  Google Scholar 

  37. Caputo M, Cametti C (2008) Diffusion with memory in two cases of biological interest. J Theor Biol 254:697–703

    PubMed  Google Scholar 

  38. Caputo M, Carcione JM (2013) A memory model of sedimentation in water reservoirs. J Hydrol 476:426–432

    Google Scholar 

  39. Caputo M (2016) The unknown set of memory constitutive equations of plastic media. Prog Fract Differ Appl 2:77–83

    Google Scholar 

  40. Arshad S, Baleanu D, Huang J, Tang Y, Al Qurashi M (2016) Dynamical analysis of fractional order model of immunogenetic tumors. Adv Mech Eng 8:1–13

    Google Scholar 

  41. Bolton L, Cloot AH, Schoombie SW, Slabbert JP (2014) A proposed fractional order Gompertz model and its application to tumour growth data. Math Med Biol 32:187–207

    PubMed  Google Scholar 

  42. Zhang F, Chen G, Li C, Kurths J (2013) Chaos synchronization in fractal differential systems. Phys Trans R Soc A. https://doi.org/10.1098/rsta.2012.0155

    Article  Google Scholar 

  43. Pinto CM, Carvalho AR (2017) The HIV/TB co-infection severity in the presence of TB multi-drug resistant strains. Ecol Complex 32:1–20

    Google Scholar 

  44. Du M, Wang Z, Hu H (2013) Measuring memory with the order fractional derivative. Sci Rep 3:3431

    PubMed  PubMed Central  Google Scholar 

  45. Alqahtani ZM, El-shahed M, Mottram NJ (2019) Derivative order dependent stability and transient behavior in a predator–prey system of fractional differential equations. Lett Biomath 6:32–49

    Google Scholar 

  46. Chasnev JR (2020) Differential equations: differential equations for engineering. The Hong Kong University of Science and Technology, Clear Water Bay

    Google Scholar 

  47. Sandev T, Tomovski Z (2019) Fractional equations and models: theory and applications. Springer, Cham

    Google Scholar 

  48. Podlubny J (1999) Fractional differential equations. Academic, London

    Google Scholar 

  49. Doetsch G (1974) Introduction to theory and applications of Laplace transform. Springer, Berlin

    Google Scholar 

  50. Karlish S, Lieb WR, Stein W (1972) Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Biochim Biophys Acta 254:126–132

    Google Scholar 

  51. Ginsburg H (1978) Galactose transport in human erythrocytes. Biochim Biophys Acta 505:119–135

    Google Scholar 

  52. Caputo M, Cametti C (2017) Fractional derivatives in the diffusion process in heterogeneous systems: the case of the trandermal paths. Math Biosci 291:38–45

    CAS  PubMed  Google Scholar 

  53. Wang Q, Zhan H (2015) On different numerical inverse Laplace methods for solute transport problems. Adv Water Res 75:80–92

    Google Scholar 

  54. Davies B, Martin B (1979) Numerical inversion of the Laplace transform: a survey and comparison of methods. J Comput Phys 33:1–32

    Google Scholar 

  55. Narayanan GV, Beskos DE (1982) Numerical operational methods for time-dependent linear problems. Int J Numer Methods Eng 18:1829–1854

    Google Scholar 

  56. Anissimov YG, Jepps OG, Dancek Y, Roberts M (2013) Mathematical and pharmacokinetic modelling of epidermal and dermal transport process. Adv Drug Deliv Rev 65:169–190

    CAS  PubMed  Google Scholar 

  57. Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl 1:1–13

    Google Scholar 

  58. Caputo M, Cametti C (2016) Fractional derivatives in the transport of drugs across biological materials and human skin. Physica A 462:705–716

    CAS  Google Scholar 

  59. Stinchcomb AL, Pirot F, Touarille GD, Bunge A, Guy RH (1999) Chemical uptake into human stratum corneum in vivo from volatile and non-volatile solvents. Pharm Res 16:1288–1293

    CAS  PubMed  Google Scholar 

  60. Curdy C, Kalia YN, Naik A, Guy RH (2001) Piroxicam delivery into human stratum corneum in vivo: iontophoresis versus passive diffusion. J Control Release 76:73–79

    CAS  PubMed  Google Scholar 

  61. Pirot F, Kalia YN, Sinchcomb AL, Keating G, Bunge A, Guy RH (1997) Characterization of the permeability barrier of human skin in vivo. Proc Natl Acad Sci USA 94:1562–1567

    CAS  PubMed  Google Scholar 

  62. Coceani N, Colombo I, Grassi M (2003) Acyclovir permeation through rat skin: mathematical modelling and in vitro experiments. Int J Pharm 254:197–210

    CAS  PubMed  Google Scholar 

  63. Anissimov YG, Roberts MS (2009) Diffusion modelling of percutaneous absorption kinetics: 4. Effect of a slow equilibrium process within stratum corneum on absorption and desorption kinetics. J Pharm Sci 98:772–781

    CAS  PubMed  Google Scholar 

  64. Dokoumetzidis A, Macheras P (2011) The changing faces of the rate concept in biopharmaceutical sciences: from classical to fractal and finally fractional. Pharm Res 28:1229–1232

    CAS  PubMed  Google Scholar 

  65. Weiss M (1999) The anomalous pharmacokinetics of amiodarone explained by non-exponential tissue trapping. J Pharmacokinet Biopharm 27:383–396

    CAS  PubMed  Google Scholar 

  66. Macheras P (1996) A fractal approach to heterogenous drug distribution: calcium pharmacokinetics. Pharm Res 13:663–670

    CAS  PubMed  Google Scholar 

  67. Ionescu C, Lopes A, Copot D, Machado JAT, Bates JHT (2017) The role of fractal calculus in modeling biological phenomena. Commun Nonlinear Sci Numer Simul 51:141–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Cametti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caputo, M., Cametti, C. Diffusion through skin in the light of a fractional derivative approach: progress and challenges. J Pharmacokinet Pharmacodyn 48, 3–19 (2021). https://doi.org/10.1007/s10928-020-09715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-020-09715-y

Keywords

Navigation