Skip to main content

Reproducible pharmacokinetics

Abstract

Reproducibility is a highly desired feature of scientific investigation in general, and it has special connotations for research in pharmacokinetics, a vibrant field with over 500,000 publications to-date. It is important to be able to differentiate between genuine heterogeneity in pharmacokinetic parameters from heterogeneity that is due to errors and biases. This overview discusses efforts and opportunities to diminish the latter type of undesirable heterogeneity. Several reporting and research guidance documents and standards have been proposed for pharmacokinetic studies, but their adoption is still rather limited. Quality problems in the methods used and model evaluations have been examined in some empirical studies of the literature. Standardization of statistical and laboratory tools and procedures can be improved in the field. Only a small fraction of pharmacokinetic studies become pre-registered and only 9995 such studies have been registered in ClinicalTrials.gov as of August 2018. It is likely that most pharmacokinetic studies remain unpublished. Publication bias affecting the results and inferences has been documented in case studies, but its exact extent is unknown for the field at-large. The use of meta-analyses in the field is still limited. Availability of raw data, detailed protocols, software and codes is hopefully improving with multiple ongoing initiatives. Several research practices can contribute to greater transparency and reproducibility for pharmacokinetic investigations.

This is a preview of subscription content, access via your institution.

References

  1. Goodman SN, Fanelli D, Ioannidis JP (2016) What does research reproducibility mean? Sci Transl Med 8:34. https://doi.org/10.1126/scitranslmed.aaf5027

    Article  Google Scholar 

  2. Macheras P, Argyrakis P, Polymilis C (1996) Fractal geometry, fractal kinetics and chaos en route to biopharmaceutical sciences. Eur J Drug Metab Pharmacokinet 21:77–86

    Article  CAS  PubMed  Google Scholar 

  3. Macheras P, Argyrakis P (1997) Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity? Pharm Res 14:842–847

    Article  CAS  PubMed  Google Scholar 

  4. Pang KS, Weiss M, Macheras P (2007) Advanced pharmacokinetic models based on organ clearance, circulatory, and fractal concepts. AAPS J 9:E268–E283

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dykstra K, Mehrotra N, Tornøe CW, Kastrissios H, Patel B, Al-Huniti N, Jadhav P, Wang Y, Byon W (2015) Reporting guidelines for population pharmacokinetic analyses. J Clin Pharmacol 55:875–887. https://doi.org/10.1002/jcph.532

    Article  PubMed  Google Scholar 

  6. Kanji S, Hayes M, Ling A, Shamseer L, Chant C, Edwards DJ, Edwards S, Ensom MH, Foster DR, Hardy B, Kiser TH, la Porte C, Roberts JA, Shulman R, Walker S, Zelenitsky S, Moher D (2015) Reporting guidelines for clinical pharmacokinetic studies: the ClinPK statement. Clin Pharmacokinet 54:783–795. https://doi.org/10.1007/s40262-015-0236-8

    Article  PubMed  Google Scholar 

  7. Guidance for Industry (2018) Population Pharmacokinetics.US Food and Drug Administration website. Available at http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/U CM072137.pdf. Accessed Aug 3 2018

  8. Romero K, Corrigan B, Tornùe CW et al (2010) Pharmacometrics as a discipline is entering the “industrialization” phase: standards, automation, knowledge sharing, and training are critical for future success. J Clin Pharmacol 50:9S–19S

    Article  PubMed  Google Scholar 

  9. Wade JR, Edholm M, Salmonson T (2005) A guide for reporting the results of population pharmacokinetic analyses: a Swedish perspective. AAPS J 7:E456

    Article  PubMed Central  Google Scholar 

  10. Guideline on Reporting the Results of Population Pharmacokinetic Analyses (2018). Committee for Medicinal Products for Human Use (CHMP) http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf. Accessed Aug 3 2018

  11. Byon W, Smith MK, Chan P, Tortorici MA et al (2013) Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance. CPT 2(e51):1–8

    Google Scholar 

  12. Bonate PL, Strougo A, Desai A et al (2012) Guidelines for the quality control of population pharmacokinetic-pharmacodynamic analyses: an industry perspective. AAPS J 14:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jamesen KM, McLeay SC, Barras A, Green B (2014) Reporting a population pharmacokinetic-pharmacodynamic study: a journal’s perspective. Clin Pharmacokinet 53:111–122

    Article  CAS  Google Scholar 

  14. Brendel K, Dartois C, Comets E et al (2007) Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet 46:221–234

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dartois C, Brendel K, Comets E et al (2007) Overview of model building strategies in population PK/PD analyses: 2002–2004 literature survey. Br J Clin Pharmacol 64:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mills E, Loke YK, Ping W, Victor MM, Daniel P, David M et al (2004) Determining the reporting quality of RCTs in clinical pharmacology. Br J Clin Pharmacol 58:61–65

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mills EJ, Chan AW, Ping W, Andy V, Gordon HG, Douglas GA (2009) Design, analysis, and presentation of crossover trials. Trials 10:27

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woodcock BG, Harder S (2017) The 10-D assessment and evidence-based medicine tool for authors and peer reviewers in clinical pharmacology. Int J Clin Pharmacol Ther 55:639–642

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jasińska-Stroschein M, Kurczewska U, Orszulak-Michalak D (2017) Errors in reporting on dissolution research: methodological and statistical implications. Pharm Dev Technol 22:103–110. https://doi.org/10.1080/10837450.2016.1194858

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer P (2011) Automated reporting of pharmacokinetic study results: gaining efficiency downstream from the laboratory. Bioanalysis 3:1471–1478. https://doi.org/10.4155/bio.11.133

    Article  CAS  PubMed  Google Scholar 

  21. Uesawa Y, Takeuchi T, Mohri K (2010) Publication bias on clinical studies of pharmacokinetic interactions between felodipine and grapefruit juice. Pharmazie 65:375–378

    CAS  PubMed  Google Scholar 

  22. Cowley AJ, Skene A, Stainer K, Hampton JR (1993) The effect of lorcainide on arrhythmias and survival in patients with acute myocardial infarction: an example of publication bias. Int J Cardiol 40:161–166

    Article  CAS  PubMed  Google Scholar 

  23. Ioannidis JP (2016) The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. Milbank Q 94:485–514. https://doi.org/10.1111/1468-0009.12210

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176:1091–1096

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rennie D (1997) Thyroid storm. JAMA 277:1238–1243

    Article  CAS  PubMed  Google Scholar 

  26. Dong BJ, Hauck WW, Gambertoglio JG, Gee L, White JR, Bubp JL, Greenspan FS (1997) Bioequivalence of generic and brand-name levothyroxine products in the treatment of hypothyroidism. JAMA 277:1205–1213

    Article  CAS  PubMed  Google Scholar 

  27. Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116:116–126. https://doi.org/10.1161/CIRCRESAHA.114.303819

    Article  CAS  PubMed  Google Scholar 

  28. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483:531–533. https://doi.org/10.1038/483531a

    Article  CAS  PubMed  Google Scholar 

  29. Lundh A, Lexchin J, Mintzes B, Schroll JB, Bero L (2017) Industry sponsorship and research outcome. Cochrane Database Syst Rev 2:MD000033. https://doi.org/10.1002/14651858.MR000033.pub3

    Article  Google Scholar 

  30. Iqbal SA, Wallach JD, Khoury MJ, Schully SD, Ioannidis JP (2016) Reproducible research practices and transparency across the biomedical literature. PLoS Biol 14(1):e1002333. https://doi.org/10.1371/journal.pbio.1002333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebrahim S, Sohani ZN, Montoya L, Agarwal A, Thorlund K, Mills EJ, Ioannidis JP (2014) Reanalyses of randomized clinical trial data. JAMA 312:1024–1032. https://doi.org/10.1001/jama.2014.9646

    Article  CAS  PubMed  Google Scholar 

  32. Völler S, Flint RB, Stolk LM, Degraeuwe PLJ, Simons SHP, Pokorna P, Burger DM, de Groot R, Tibboel D, Knibbe CAJ, DINO study group (2017) Model-based clinical dose optimization for phenobarbital in neonates: an illustration of the importance of data sharing and external validation. Eur J Pharm Sci 109S:S90–S97. https://doi.org/10.1016/j.ejps.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  33. Doshi P, Goodman SN, Ioannidis JP (2013) Raw data from clinical trials: within reach? Trends Pharmacol Sci 34:645–647. https://doi.org/10.1016/j.tips.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  34. Anderson BJ, Merry AF (2009) Data sharing for pharmacokinetic studies. Paediatr Anaesth 19:1005–1010

    Article  PubMed  Google Scholar 

  35. Lacy-Jones K, Hayward P, Andrews S, Gledhill I, McAllister M, Abrahamsson B, Rostami-Hodjegan A, Pepin X (2017) Biopharmaceutics data management system for anonymised data sharing and curation: first application with orbito IMI project. Comput Methods Progr Biomed 140:29–44. https://doi.org/10.1016/j.cmpb.2016.11.006

    Article  Google Scholar 

  36. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, Heroux MA, Ioannidis JP, Taufer M (2016) Enhancing reproducibility for computational methods. Science 354:1240–1241

    Article  CAS  PubMed  Google Scholar 

  37. Beal S, Sheiner LB, Boekmann A, Bauer RJ (2009) NONMEM’s user’s guides. ICON Development Solutions, Ellicott City

    Google Scholar 

  38. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Progr Biomed 79:241–257

    Article  Google Scholar 

  39. Sanduja S, Jewell P, Aron E, Pharai N (2015) Cloud computing for pharmacometrics: using AWS, NONMEM, PsN, Grid Engine, and Sonic. CPT Pharmacometrics Syst Pharmacol 4:537–546. https://doi.org/10.1002/psp4.12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conrado DJ, Karlsson MO, Romero K, Sarr C, Wilkins JJ (2017) Open innovation: towards sharing of data, models and workflows. Eur J Pharm Sci 109S:S65–S71. https://doi.org/10.1016/j.ejps.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  41. Swat MJ, Moodie S, Wimalaratne SM, Kristensen NR, Lavielle M, Mari A, Magni P, Smith MK, Bizzotto R, Pasotti L, Mezzalana E, Comets E, Sarr C, Terranova N, Blaudez E, Chan P, Chard J, Chatel K, Chenel M, Edwards D, Franklin C, Giorgino T, Glont M, Girard P, Grenon P, Harling K, Hooker AC, Kaye R, Keizer R, Kloft C, Kok JN, Kokash N, Laibe C, Laveille C, Lestini G, Mentré F, Munafo A, Nordgren R, Nyberg HB, Parra-Guillen ZP, Plan E, Ribba B, Smith G, Trocóniz IF, Yvon F, Milligan PA, Harnisch L, Karlsson M, Hermjakob H, Le Novère N (2015) Pharmacometrics Markup Language (PharmML): opening new perspectives for model exchange in drug development. CPT Pharmacometrics Syst Pharmacol 4:316–319. https://doi.org/10.1002/psp4.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith MK, Moodie SL, Bizzotto R, Blaudez E, Borella E, Carrara L, Chan P, Chenel M, Comets E, Gieschke R, Harling K, Harnisch L, Hartung N, Hooker AC, Karlsson MO, Kaye R, Kloft C, Kokash N, Lavielle M, Lestini G, Magni P, Mari A, Mentré F, Muselle C, Nordgren R, Nyberg HB, Parra-Guillén ZP, Pasotti L, Rode-Kristensen N, Sardu ML, Smith GR, Swat MJ, Terranova N, Yngman G, Yvon F, Holford N, DDMoRe consortium (2017) Model description language (MDL): a standard for modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6:647–650. https://doi.org/10.1002/psp4.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilkins JJ, Chan P, Chard J, Smith G, Smith MK, Beer M, Dunn A, Flandorfer C, Franklin C, Gomeni R, Harnisch L, Kaye R, Moodie S, Sardu ML, Wang E, Watson E, Wolstencroft K, Cheung S, DDMoRe Consortium (2017) Thoughtflow: standards and tools for provenance capture and workflow definition to support model-informed drug discovery and development. CPT Pharmacometrics Syst Pharmacol 6:285–292. https://doi.org/10.1002/psp4.12171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43:D439–D446

    Article  CAS  PubMed  Google Scholar 

  45. Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S et al (2012) SABIO-RK–database for biochemical reaction kinetics. Nucleic Acids Res 40:D790–D796

    Article  CAS  PubMed  Google Scholar 

  46. Wittig U, Rey M, Kania R, Bittkowski M, Shi L, Golebiewski M, Weidemann A, Mueller W, Rojas I (2014) Challenges for an enzymatic reaction kinetics database. FEBS J 281:572–582

    Article  CAS  PubMed  Google Scholar 

  47. Wittig U, Kania R, Bittkowski M, Wetsch E, Shi L, Jong L, Golebiewski M, Rey M, Weidemann A, Rojas I et al (2014) Data extraction for the reaction kinetics database SABIO-RK. Perspect Sci 1:33–40

    Article  Google Scholar 

  48. Swainston N, Baici A, Bakker BM, Cornish-Bowden A, Fitzpatrick PF, Halling P, Leyh TS, O’Donovan C, Raushel FM, Reschel U, Rohwer JM, Schnell S, Schomburg D, Tipton KF, Tsai MD, Westerhoff HV, Wittig U, Wohlgemuth R, Kettner C (2018) STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS J 285:2193–2204. https://doi.org/10.1111/febs.14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454

    Article  CAS  PubMed  Google Scholar 

  50. Ioannidis JP, Fanelli D, Dunne DD, Goodman SN (2015) Meta-research: evaluation and improvement of research methods and practices. PLoS Biol 13:e1002264. https://doi.org/10.1371/journal.pbio.1002264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. A. Ioannidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is an invited manuscript for the Special Tribute Issue for Panos Macheras, editor: Robert R Bies Pharm.D.Ph.D.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ioannidis, J.P.A. Reproducible pharmacokinetics. J Pharmacokinet Pharmacodyn 46, 111–116 (2019). https://doi.org/10.1007/s10928-019-09621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-019-09621-y

Keywords

  • Reproducibility
  • Pharmacokinetics
  • Bias
  • Heterogeneity
  • Research practices
  • Trial registration
  • Data sharing