Advertisement

Journal of Pharmacokinetics and Pharmacodynamics

, Volume 45, Issue 5, pp 659–661 | Cite as

Data standards for model-informed drug development: an ISoP initiative

  • Andrijana Radivojevic
  • Brian Corrigan
  • Nicholas Downie
  • Robert Fox
  • Jill Fiedler-Kelly
  • Huan Liu
  • Murad Melhem
  • David Radke
  • Peter Schaefer
  • Jing Su
  • Maciej J. Swat
  • Nathan S. Teuscher
  • Neelima Thanneer
  • Alice Zong
  • Justin J. Wilkins
Perspective

Introduction

Analysis datasets are fundamental components of pharmacometric analyses and their quality and readiness highly correlate with the efficiency and impact of pharmacometrics deliverables overall [1]. Despite this, structures of datasets vary widely. This article introduces the activities of International Society of Pharmacometrics (ISoP) Data Standards Group towards establishing standards for pharmacometric datasets. The ultimate goal is to reduce the time required to specify, implement and review datasets, and to facilitate portability within and across organizations.

Data in pharmacometrics

The last two decades have seen remarkable changes in the expectations for data used in decision-making, both in drug development and in the clinic, particularly with respect to the speed of collection, analysis, and communication of results. In parallel, sources of data have grown exponentially in type and quantity, challenging our ability to utilize the available information in a cogent...

Notes

Acknowledgements

The authors thank and acknowledge the contributions of ISoP Data Standards initiative group members: Ted Grasela, Jeffry Florian, Timothy Bergsma, Warwick Benger, Christian Rasmussen, Henning Schmidt, Liping Zhang, Scott Pivirotto, Stuart Pearce, Pragathi Kotha Venkata, Vishak Subramoney and Ana Henry, as well as René Bruno for his feedback on the manuscript.

Compliance with ethical standards

Conflict of interest

A.R. is an employee of IntiGrowth LLC, B.C. of Pfizer Global Research, N.D. of Bayer AG, R.F. and H.L. of AstraZeneca, J.F.-K. of Cognigen Corporation (a SimulationsPlus company), M.M. of Amgen Inc., D.R. of Eli Lilly and Company, P.S. of VCA-Plus, J.S. of Merck, M.J.S. of Simcyp (a Certara company), N.S.T. of Certara, N.T. of Bristol-Myers Squibb, A.Z. of Janssen Pharmaceutical Companies of Johnson & Johnson, J.J.W. of Occams.

References

  1. 1.
    Grasela T, Fiedler-Kelly J, Hitchcock D (2009) Improving the efficiency and ensuring the quality of data assembly for pharmacometric analysis. PAGE 18 Abstr 1552. www.page-meeting.org/?abstract=1552
  2. 2.
    European Medicines Agency policy on publication of clinical data for medicinal products for human use. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/10/WC500174796.pdf
  3. 3.
    Wilkins JJ, Jonsson EN (2013) Reproducible pharmacometrics [tutorial]. PAGE 22 Abstr 2774. www.page-meeting.org/?abstract=2774
  4. 4.
    Marshall SF et al (2016) Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacomet Syst Pharmacol 5(3):93–122CrossRefGoogle Scholar
  5. 5.
    Harnisch L, Matthews I, Chard J, Karlsson MO (2013) Drug and disease model resources: a consortium to create standards and tools to enhance model-based drug development. CPT Pharmacomet Syst Pharmacol 2:e34CrossRefGoogle Scholar
  6. 6.
    Woosley RL, Myers RT, Goodsaid F (2010) The critical path institute’s approach to precompetitive sharing and advancing regulatory science. Clin Pharmacol Ther 87(5):530–533CrossRefPubMedGoogle Scholar
  7. 7.
    Romero K et al (2010) Pharmacometrics as a discipline is entering the “industrialization” phase: standards, automation, knowledge sharing, and training are critical for future success. J Clin Pharmacol 50(9 Suppl):9S–19SCrossRefPubMedGoogle Scholar
  8. 8.
    Karlsson MO, Conrado D, Romero K, Sarr C, Wilkins JJ (2017) Open innovation: towards sharing of data, models and workflows. Eur J Pharm Sci 109S:S65–S71PubMedGoogle Scholar
  9. 9.
    Radivojevic A, Schmidt H (2015) Datasets for pharmacometric analyses: internal review and standardization efforts. J Pharmacokinet Pharmacodyn 42:S81–S82Google Scholar
  10. 10.
    Thanneer N, Roy A (2014) Best practices for preparation of pharmacometric analysis data sets. ACoP5. http://www.acop7.org/assets/Legacy_ACOPs/ACOP5/Poster_Abstracts/m-058.pdf

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrijana Radivojevic
    • 1
  • Brian Corrigan
    • 2
  • Nicholas Downie
    • 3
  • Robert Fox
    • 4
  • Jill Fiedler-Kelly
    • 5
  • Huan Liu
    • 4
  • Murad Melhem
    • 6
  • David Radke
    • 7
  • Peter Schaefer
    • 8
  • Jing Su
    • 9
  • Maciej J. Swat
    • 10
  • Nathan S. Teuscher
    • 11
  • Neelima Thanneer
    • 12
  • Alice Zong
    • 13
  • Justin J. Wilkins
    • 14
  1. 1.Pharmacometrics, Novartis Pharmaceuticals CorporationEast HanoverUSA
  2. 2.Pfizer Global ResearchGrotonUSA
  3. 3.Bayer AGBerlinGermany
  4. 4.AstraZenecaWalthamUSA
  5. 5.Cognigen CorporationBuffaloUSA
  6. 6.AmgenThousand OaksUSA
  7. 7.Eli Lilly and CompanyIndianapolisUSA
  8. 8.VCA-PlusRaleighUSA
  9. 9.Merck & Co.KenilworthUSA
  10. 10.Simcyp (A Certara Company)SheffieldUK
  11. 11.CertaraPrincetonUSA
  12. 12.Bristol-Myers SquibbPrincetonUSA
  13. 13.JanssenHorshamUSA
  14. 14.OccamsAmstelveenThe Netherlands

Personalised recommendations