Skip to main content
Log in

A tutorial on model informed approaches to cardiovascular safety with focus on cardiac repolarisation

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Drugs can affect the cardiovascular (CV) system either as an intended treatment or as an unwanted side effect. In both cases, drug-induced cardiotoxicities such as arrhythmia and unfavourable hemodynamic effects can occur, and be described using mathematical models; such a model informed approach can provide valuable information during drug development and can aid decision-making. However, in order to develop informative models, it is vital to understand CV physiology. The aims of this tutorial are to present (1) key background biological and medical aspects of the CV system, (2) CV electrophysiology, (3) CV safety concepts, (4) practical aspects of development of CV models and (5) regulatory expectations with a focus on using model informed and quantitative approaches to support nonclinical and clinical drug development. In addition, we share several case studies to provide practical information on project strategy (planning, key questions, assumptions setting, and experimental design) and mathematical models development that support decision-making during drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Diagram adapted from Sallam et al. [71]

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. EFPIA MID3 Workgroup, Marshall SF, Burghaus R, Cosson V, Cheung SY, Chenel M, DellaPasqua O, Frey N, Hamren B, Harnisch L, Ivanow F, Kerbusch T, Lippert J, Milligan PA, Rohou S, Staab A, Steimer JL, Tornoe C, Visser SA (2016) Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharm Syst Pharm 5(3):93–122. https://doi.org/10.1002/psp4.12049

    Article  CAS  Google Scholar 

  2. Milligan PA, Brown MJ, Marchant B, Martin SW, van der Graaf PH, Benson N, Nucci G, Nichols DJ, Boyd RA, Mandema JW, Krishnaswami S, Zwillich S, Gruben D, Anziano RJ, Stock TC, Lalonde RL (2013) Model-based drug development: a rational approach to efficiently accelerate drug development. Clin Pharmacol Ther 93(6):502–514. https://doi.org/10.1038/clpt.2013.54

    Article  PubMed  CAS  Google Scholar 

  3. Stone JA, Banfield C, Pfister M, Tannenbaum S, Allerheiligen S, Wetherington JD, Krishna R, Grasela DM (2010) Model-based drug development survey finds pharmacometrics impacting decision making in the pharmaceutical industry. J Clin Pharmacol 50(9 Suppl):20s–30s. https://doi.org/10.1177/0091270010377628

    Article  PubMed  Google Scholar 

  4. Wetherington JD, Pfister M, Banfield C, Stone JA, Krishna R, Allerheiligen S, Grasela DM (2010) Model-based drug development: strengths, weaknesses, opportunities, and threats for broad application of pharmacometrics in drug development. J Clin Pharmacol 50(9 Suppl):31s–46s. https://doi.org/10.1177/0091270010377629

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Pfister M, Meibohm B (2008) Concepts and Challenges in Quantitative Pharmacology and Model-Based Drug Development. AAPS J 10(4):552–559. https://doi.org/10.1208/s12248-008-9062-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Romero K, Sinha V, Allerheiligen S, Danhof M, Pinheiro J, Kruhlak N, Wang Y, Wang SJ, Sauer JM, Marier JF, Corrigan B, Rogers J, Lambers Heerspink HJ, Gumbo T, Vis P, Watkins P, Morrison T, Gillespie W, Gordon MF, Stephenson D, Hanna D, Pfister M, Lalonde R, Colatsky T (2014) Modeling and simulation for medical product development and evaluation: highlights from the FDA-C-Path-ISOP 2013 workshop. J Pharmacokinet Pharmacodyn 41(6):545–552. https://doi.org/10.1007/s10928-014-9390-0

    Article  PubMed  Google Scholar 

  7. Detweiler DK, Erickson HH (2004) Control mechanisms of the circulatory systems. In: Reece WO (ed) Dukes’ physiology of domestic animals. Cornell Univeristy Press, Ithaca, pp 273–302

    Google Scholar 

  8. Kahn CM, Line S (2010) The Merck veterinary manual. Wiley, Ames

    Google Scholar 

  9. Bers D (2001) Excitation-contraction coupling and cardiac contractile force, vol 237. Springer, New York

    Google Scholar 

  10. Noble RJ, Hillis JS, Rothbaum DA (1990) Electrocardiography. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations. Butterworths, Boston

    Google Scholar 

  11. Belardinelli L, Antzelevitch C, Vos MA (2003) Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci 24(12):619–625. https://doi.org/10.1016/j.tips.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  12. E14 Implementation Working Group (2015) ICH E14 guideline: the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Questions & Answers (R3)

  13. Garnett C, Bonate PL, Dang Q, Ferber G, Huang D, Liu J, Mehrotra D, Riley S, Sager P, Tornoe C, Wang Y (2017) Scientific white paper on concentration-QTc modeling. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-017-9558-5

    Article  PubMed  Google Scholar 

  14. Huang H, Pugsley MK, Fermini B, Curtis MJ, Koerner J, Accardi M, Authier S (2017) Cardiac voltage-gated ion channels in safety pharmacology: review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 87:11–23. https://doi.org/10.1016/j.vascn.2017.04.002

    Article  PubMed  CAS  Google Scholar 

  15. Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11(12):909–922. https://doi.org/10.1038/nrd3845

    Article  PubMed  CAS  Google Scholar 

  16. Pollard C, Abi Gerges N, Bridgland-Taylor M, Easter A, Hammond T, Valentin J (2010) An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol 159(1):12–21. https://doi.org/10.1111/j.1476-5381.2009.00207.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463–469. https://doi.org/10.1038/nature04710

    Article  PubMed  CAS  Google Scholar 

  18. Harmer AR, Abi-Gerges N, Easter A, Woods A, Lawrence CL, Small BG, Valentin JP, Pollard CE (2008) Optimisation and validation of a medium-throughput electrophysiology-based hNav1.5 assay using IonWorks. J Pharmacol Toxicol Methods 57(1):30–41. https://doi.org/10.1016/j.vascn.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  19. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PKS, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58(1):32–45. https://doi.org/10.1016/S0008-6363(02)00846-5

    Article  PubMed  CAS  Google Scholar 

  20. Gintant G (2011) An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther 129(2):109–119. https://doi.org/10.1016/j.pharmthera.2010.08.008

    Article  PubMed  CAS  Google Scholar 

  21. Harmer AR, Valentin JP, Pollard CE (2011) On the relationship between block of the cardiac Na(+) channel and drug-induced prolongation of the QRS complex. Br J Pharmacol 164(2):260–273. https://doi.org/10.1111/j.1476-5381.2011.01415.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wymore RS, Gintant GA, Wymore RT, Dixon JE, McKinnon D, Cohen IS (1997) Tissue and species distribution of mRNA for the IKr-like K + channel, erg. Circ Res 80(2):261–268

    Article  PubMed  CAS  Google Scholar 

  23. Prior H, McMahon N, Schofield J, Valentin JP (2009) Non-invasive telemetric electrocardiogram assessment in conscious beagle dogs. J Pharmacol Toxicol Methods 60(2):167–173. https://doi.org/10.1016/j.vascn.2009.06.001

    Article  PubMed  CAS  Google Scholar 

  24. Parkinson J, Chain ASY, van der Graaf PH, Visser SAG (2014) Pharmacometrics in cardiovascular safety. In: Schmidt S, Derendorf H (eds) Applied pharmacometrics. Springer, New York, pp 189–227. https://doi.org/10.1007/978-1-4939-1304-6_7

    Chapter  Google Scholar 

  25. Collins TA, Bergenholm L, Abdulla T, Yates J, Evans N, Chappell MJ, Mettetal JT (2015) Modeling and simulation approaches for cardiovascular function and their role in safety assessment. CPT Pharm Syst Pharm 4(3):e00018. https://doi.org/10.1002/psp4.18

    Article  CAS  Google Scholar 

  26. Watson E, Pointon A, Carlsson L, Mettetal J, Wallman M, Kalsson J, Zemzemi N, Zurek M (2017) A demonstration of multi-scale ECG-trace modelling of guinea pigs: helping with drug safety in the discovery process (submitted)

  27. Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35(1):123–129

    Article  PubMed  CAS  Google Scholar 

  28. Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annu Rev Physiol 34:13–46. https://doi.org/10.1146/annurev.ph.34.030172.000305

    Article  PubMed  CAS  Google Scholar 

  29. Guyton AC, Lindsey AW, Kaufmann BN (1955) Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol 180(3):463–468

    PubMed  CAS  Google Scholar 

  30. Grodins FS (1959) Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q Rev Biol 34(2):93–116

    Article  PubMed  CAS  Google Scholar 

  31. Warner HR (1959) The use of an analog computer for analysis of control mechanisms in the circulation. Proc IRE 47(11):1913–1916

    Article  Google Scholar 

  32. Beneken JEWDB (1972) A physical approach to hemodynamic aspects of the human cardiovascular system. In: Reeve EBGA (ed) Physical bases of circulatory transport. W.B. Saunders, Philadelphia, pp 1–45

    Google Scholar 

  33. Noble D (2002) Modeling the heart—from genes to cells to the whole organ. Science 295(5560):1678–1682

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez B, Burrage K, Gavaghan D, Grau V, Kohl P, Noble D (2010) The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Ther 88(1):130–134

    Article  PubMed  CAS  Google Scholar 

  35. Berger SI, Iyengar R (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 3(2):129–135

    Article  PubMed  CAS  Google Scholar 

  36. Berger SI, Ma’ayan A, Iyengar R (2010) Systems pharmacology of arrhythmias. Sci Signal 3(118):ra30

    PubMed  PubMed Central  Google Scholar 

  37. Francheteau P, Steimer JL, Merdjan H, Guerret M, Dubray C (1993) A mathematical model for dynamics of cardiovascular drug action: application to intravenous dihydropyridines in healthy volunteers. J Pharmacokinet Biopharm 21(5):489–514

    Article  PubMed  CAS  Google Scholar 

  38. Cheung SY, Majid O, Yates JW, Aarons L (2012) Structural identifiability analysis and reparameterisation (parameter reduction) of a cardiovascular feedback model. Eur J Pharm Sci 46(4):259–271. https://doi.org/10.1016/j.ejps.2011.12.017

    Article  PubMed  CAS  Google Scholar 

  39. Darpo B, Garnett C, Benson CT, Keirns J, Leishman D, Malik M, Mehrotra N, Prasad K, Riley S, Rodriguez I (2014) Cardiac Safety Research Consortium: can the thorough QT/QTc study be replaced by early QT assessment in routine clinical pharmacology studies? Scientific update and a research proposal for a path forward. Am Heart J 168(3):262–272

    Article  PubMed  Google Scholar 

  40. Karlsson MO, Jonsson EN, Wiltse CG, Wade JR (1998) Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J Pharmacokinet Biopharm 26(2):207–246. https://doi.org/10.1023/a:1020561807903

    Article  PubMed  CAS  Google Scholar 

  41. Fisch C (2000) Centennial of the string galvanometer and the electrocardiogram. J Am Coll Cardiol 36(6):1737–1745. https://doi.org/10.1016/S0735-1097(00)00976-1.

  42. Postema PG, Wilde AAM (2014) The measurement of the QT interval. Curr Cardiol Rev 10(3):287–294. https://doi.org/10.2174/1573403X10666140514103612

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bazett H (1920) An analysis of the time-relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  44. Fridericia LS (1920) Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. J Intern Med 53(1):469–486

    Google Scholar 

  45. Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D (1992) An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol 70(7):797–801. https://doi.org/10.1016/0002-9149(92)90562-D

    Article  PubMed  CAS  Google Scholar 

  46. Ring A (2010) Statistical models for heart rate correction of the QT interval. Stat Med 29(7–8):786–796. https://doi.org/10.1002/sim.3791

    Article  PubMed  Google Scholar 

  47. Malik M, Hnatkova K, Kowalski D, Keirns JJ, van Gelderen EM (2012) Importance of subject-specific QT/RR curvatures in the design of individual heart rate corrections of the QT interval. J Electrocardiol 45(6):571–581. https://doi.org/10.1016/j.jelectrocard.2012.07.017

    Article  PubMed  Google Scholar 

  48. Indik JH, Pearson EC, Fried K, Woosley RL (2006) Bazett and Fridericia QT correction formulas interfere with measurement of drug-induced changes in QT interval. Heart Rhythm 3(9):1003–1007. https://doi.org/10.1016/j.hrthm.2006.05.023

    Article  PubMed  Google Scholar 

  49. Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, Ector J, Willems R (2016) Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. https://doi.org/10.1161/jaha.116.003264

    Article  PubMed  PubMed Central  Google Scholar 

  50. Funck-Brentano C, Jaillon P (1993) Rate-corrected QT interval: techniques and limitations. Am J Cardiol 72(6):17b–22b

    Article  PubMed  CAS  Google Scholar 

  51. Garnett CE, Zhu H, Malik M, Fossa AA, Zhang J, Badilini F, Li J, Darpö B, Sager P, Rodriguez I (2012) Methodologies to characterize the QT/corrected QT interval in the presence of drug-induced heart rate changes or other autonomic effects. Am Heart J 163(6):912–930

    Article  PubMed  Google Scholar 

  52. Chain AS, Krudys KM, Danhof M, Della Pasqua O (2011) Assessing the probability of drug-induced QTc-interval prolongation during clinical drug development. Clin Pharmacol Ther 90(6):867–875. https://doi.org/10.1038/clpt.2011.202

    Article  PubMed  CAS  Google Scholar 

  53. Chain AS, Dubois VF, Danhof M, Sturkenboom MC, Della Pasqua O (2013) Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation. Br J Clin Pharmacol 76(5):708–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dubois VFS, Chain A, van de Graaf P, Leishman D, Gallacher D, McMahon N, Danhof M, Pasqua OD (2011) Interspecies comparison of moxifloxacin induced QTc-interval prolongation. Population Approach Group in Europe (PAGE), Berlin

    Google Scholar 

  55. Watson KJ, Gorczyca WP, Umland J, Zhang Y, Chen X, Sun SZ, Fermini B, Holbrook M, Van Der Graaf PH (2011) Pharmacokinetic–pharmacodynamic modelling of the effect of Moxifloxacin on QT c prolongation in telemetered cynomolgus monkeys. J Pharmacol Toxicol Methods 63(3):304–313

    Article  PubMed  CAS  Google Scholar 

  56. Piotrovsky V (2005) Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J 7(3):E609–624. https://doi.org/10.1208/aapsj070363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bonate PL (2003) Assessment of QTc interval prolongation in a phase 1 study using Monte Carlo simulation. In: Kimko HDS (ed) Simulation in clinical trials. Marcel Dekker, New York, pp 353–367

    Google Scholar 

  58. Ollerstam A, Persson AH, Visser SA, Fredriksson JM, Forsberg T, Nilsson LB, Eklund G, Wiklund SJ, Gabrielsson J, Duker G, Al-Saffar A (2007) A novel approach to data processing of the QT interval response in the conscious telemetered beagle dog. J Pharmacol Toxicol Methods 55(1):35–48. https://doi.org/10.1016/j.vascn.2006.02.009

    Article  PubMed  CAS  Google Scholar 

  59. Obers S, Staudacher I, Ficker E, Dennis A, Koschny R, Erdal H, Bloehs R, Kisselbach J, Karle C, Schweizer A, Katus H, Thomas D (2010) Multiple mechanisms of hERG liability: K + current inhibition, disruption of protein trafficking, and apoptosis induced by amoxapine. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-010-0496-7

    Article  PubMed  Google Scholar 

  60. Dennis AT, Wang L, Wan H, Nassal D, Deschenes I, Ficker E (2012) Molecular determinants of pentamidine-induced hERG trafficking inhibition. Mol Pharmacol 81(2):198–209. https://doi.org/10.1124/mol.111.075135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bergenholm L, Parkinson J, Mettetal J, Evans ND, Chappell MJ, Collins T (2017) Predicting QRS and PR interval prolongations in humans using nonclinical data. Br J Pharmacol 174(19):3268–3283. https://doi.org/10.1111/bph.13940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Jonker DM, Kenna LA, Leishman D, Wallis R, Milligan PA, Jonsson EN (2005) A pharmacokinetic-pharmacodynamic model for the quantitative prediction of dofetilide clinical QT prolongation from human ether-a-go-go-related gene current inhibition data. Clin Pharmacol Ther 77(6):572–582. https://doi.org/10.1016/j.clpt.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  63. Mooney L, Marks L, Philp KL, Skinner M, Coker SJ, Currie S (2012) Optimising conditions for studying the acute effects of drugs on indices of cardiac contractility and on haemodynamics in anaesthetized guinea pigs. J Pharmacol Toxicol Methods 66(1):43–51

    Article  PubMed  CAS  Google Scholar 

  64. Marks L, Borland S, Philp K, Ewart L, Lainee P, Skinner M, Kirk S, Valentin JP (2012) The role of the anaesthetised guinea-pig in the preclinical cardiac safety evaluation of drug candidate compounds. Toxicol Appl Pharmacol 263(2):171–183. https://doi.org/10.1016/j.taap.2012.06.007

    Article  PubMed  CAS  Google Scholar 

  65. Morissette P, Nishida M, Trepakova E, Imredy J, Lagrutta A, Chaves A, Hoagland K, Hoe CM, Zrada MM, Travis JJ, Zingaro GJ, Gerenser P, Friedrichs G, Salata JJ (2013) The anesthetized guinea pig: an effective early cardiovascular derisking and lead optimization model. J Pharmacol Toxicol Methods 68(1):137–149. https://doi.org/10.1016/j.vascn.2013.04.010

    Article  PubMed  CAS  Google Scholar 

  66. ICH (2000) S7A guideline, safety pharmacology studies for human pharmaceuticals. ICH, Geneva

    Google Scholar 

  67. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci 29(4):186–191. https://doi.org/10.1016/j.tips.2008.01.007

    Article  PubMed  CAS  Google Scholar 

  68. Parkinson J, Visser SAG, Jarvis P, Pollard C, Valentin J-P, Yates JWT, Ewart L (2013) Translational pharmacokinetic–pharmacodynamic modeling of QTc effects in dog and human. J Pharmacol Toxicol Methods 68(3):357–366. https://doi.org/10.1016/j.vascn.2013.03.007

    Article  PubMed  CAS  Google Scholar 

  69. Dota CD, Edvardsson N, Skallefell B, Fager G (2009) PC-Based ECG waveform recognition-validation of novel software against a reference ECG database. Ann Noninvasive Electrocardiol 14(Suppl 1):S42–47. https://doi.org/10.1111/j.1542-474x.2008.00263.x

    Article  PubMed  Google Scholar 

  70. Darpo B, Benson C, Dota C, Ferber G, Garnett C, Green C, Jarugula V, Johannesen L, Keirns J, Krudys K (2015) Results from the IQ-CSRC prospective study support replacement of the thorough QT study by QT assessment in the early clinical phase. Clin Pharmacol Ther 97(4):326–335

    Article  PubMed  CAS  Google Scholar 

  71. Sallam K, Li Y, Sager PT, Houser SR, Wu JC (2015) Finding the rhythm of sudden cardiac death. Circ Res 116(12):1989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Throckmorton D (2015) Non-clinical cardiovascular safety testing: moving forward. Safety Pharmacology Society Webinar, Reston

    Google Scholar 

  73. ICH (2005) S7B guideline, the non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. ICH Expert Working Group, Geneva

    Google Scholar 

  74. ICH (2005) E14 guideline, the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. ICH Expert Working Group, Geneva

    Google Scholar 

  75. ICH (2016) ICH E14/S7B IWG/DG work plan. ICH, Geneva

    Google Scholar 

  76. U.S. Food and Drug Administration Center for Drugs Evaluation Research (2017) QT interdisciplinary review team (IRT). FDA, Maryland. https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm365039.htm

  77. EMA CfMPfHUC (2016) Reflection paper on assessment of cardiovascular safety profile of medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/03/WC500203804.pdf

  78. Health Level Seven International (2017) Section 3: clinical and adminstrative domains: HL7 version 3 standard: regulated studies; annotated ECG (aECG). http://www.hl7.org/implement/standards/product_brief.cfm?product_id=70

  79. Vicente J (2016) FDA ECG Warehouse. CSRC Think Tank, Miami

    Google Scholar 

Download references

Acknowledgements

The authors thank David Carlile, Solange Corriol-Rohou, Amy Pointon, Dinko Rekic and James Yates for review and discussion of the article and Fig. 4 was provided by David Svensson. The author would like to thank Don Stanski, Ulf Eriksson, James Li, Nidal Al-Huniti, James Yates, Craig Lambert, Jay Mettetal, Charlotte Kroft, Zinnia Parra-Guillen, Niklas Hartung, Wendy Aartsen, Thomas Leja, Mats O. Karlsson, Liesbeth Lange, Lena Friberg, Paolo Magni, Mike Smith, Lutz Harnisch and Peter Milligan for their supports and discussions in the organisation of AstraZeneca lead IMI DDMoRe (Drug Diseases Model Resources) Cardiac Safety course. Work performed by S. Y. Amy Cheung, Joanna Parkinson, Ulrika Wählby-Hamrén, Corina D. Dota, Åsa Kragh, Torbjörn Vik, Teresa Collins, Cecilia Arfvidsson, Chris E. Pollard, Helen K. Tomkinson and Bengt Hamrén are funded by AstraZeneca. Work performed by Linnea Bergenholm was supported through the Marie Curie FP7 ITN EID project No. 316736, IMPACT “Innovative Modeling for Pharmacological Advances through Collaborative Training” and through the NC3Rs/EPSRC project No. NC/K001205/1 “Structural Identifiability and Indistinguishability Analysis as Tools for Quantitative and Systems Pharmacology to Support the 3Rs.” Part of the manuscript is written based on materials from the AstraZeneca lead IMI DDMoRe Cardiac Safety course with input from Freie Universitaet Berlin where both AstraZeneca and Freie Universitaet Berlin are IMI DDMoRe consortium partners. Innovative Medicines Initiative (IMI) Joint Undertaking under grant Agreement No. 115156, resources of which are composed of financial contributions from the European Union’s Seventh Framework Programme (FP7/2007–2013) and European Federation of Pharmaceutical Industries and Association’s companies in kind contribution. The DDMoRe project is also financially supported by contributions from academia and small and medium enterprise partners (SME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. A. Cheung.

Ethics declarations

Conflict of interest

S.Y.A.C., J.P., U.W.-H., C.D.D., Å.M.K., T.V., T.C., L.B., C.A., C.E.P., H.K.T. and B.H. are employees of AstraZeneca Pharmaceuticals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, S.Y.A., Parkinson, J., Wählby-Hamrén, U. et al. A tutorial on model informed approaches to cardiovascular safety with focus on cardiac repolarisation. J Pharmacokinet Pharmacodyn 45, 365–381 (2018). https://doi.org/10.1007/s10928-018-9589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-018-9589-6

Keywords

Navigation