Skip to main content

Drug–physiology interaction and its influence on the QT prolongation-mechanistic modeling study

Abstract

The current study is an example of drug–disease interaction modeling where a drug induces a condition which can affect the pharmacodynamics of other concomitantly taken drugs. The electrophysiological effects of hypokaliemia and heart rate changes induced by the antiasthmatic drugs were simulated with the use of the cardiac safety simulator. Biophysically detailed model of the human cardiac physiology—ten Tusscher ventricular cardiomyocyte cell model—was employed to generate pseudo-ECG signals and QTc intervals for 44 patients from four clinical studies. Simulated and observed mean QTc values with standard deviation (SD) for each reported study point were compared and differences were analyzed with Student’s t test (α = 0.05). The simulated results reflected the QTc interval changes measured in patients, as well as their clinically observed interindividual variability. The QTc interval changes were highly correlated with the change in plasma potassium both in clinical studies and in the simulations (Pearson’s correlation coefficient > 0.55). The results suggest that the modeling and simulation approach could provide valuable quantitative insight into the cardiological effect of the potassium and heart rate changes caused by electrophysiologically inactive, non-cardiological drugs. This allows to simulate and predict the joint effect of several risk factors for QT prolongation, e.g., drug-dependent QT prolongation due to the ion channels inhibition and the current patient physiological conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Divo MJ, Martinez CH, Mannino DM (2014) Ageing and the epidemiology of multimorbidity. Eur Respir J 44:1055–1068. https://doi.org/10.1183/09031936.00059814

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO Facts about ageing. In: WHO. http://www.who.int/ageing/about/facts/en/. Accessed 6 Oct 2017

  3. Payne RA (2016) The epidemiology of polypharmacy. Clin Med 16:465–469. https://doi.org/10.7861/clinmedicine.16-5-465

    Article  Google Scholar 

  4. Moen J, Antonov K, Larsson CA, Lindblad U, Nilsson JLG, Råstam L, Ring L (2009) Factors associated with multiple medication use in different age groups. Ann Pharmacother 43:1978–1985. https://doi.org/10.1345/aph.1M354

    Article  PubMed  Google Scholar 

  5. St. Louis EK (2009) Truly “rational” polytherapy: maximizing efficacy and minimizing drug interactions, drug load, and adverse effects. Curr Neuropharmacol 7:96–105. https://doi.org/10.2174/157015909788848929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dechanont S, Maphanta S, Butthum B, Kongkaew C (2014) Hospital admissions/visits associated with drug-drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 23:489–497. https://doi.org/10.1002/pds.3592

    Article  PubMed  Google Scholar 

  7. Astrand B, Astrand E, Antonov K, Petersson G (2006) Detection of potential drug interactions—a model for a national pharmacy register. Eur J Clin Pharmacol 62:749–756. https://doi.org/10.1007/s00228-006-0143-x

    Article  PubMed  Google Scholar 

  8. McDonnell PJ, Jacobs MR (2002) Hospital admissions resulting from preventable adverse drug reactions. Ann Pharmacother 36:1331–1336. https://doi.org/10.1345/aph.1A333

    Article  PubMed  Google Scholar 

  9. Shad MU, Marsh C, Preskorn SH (2001) The economic consequences of a drug-drug interaction. J Clin Psychopharmacol 21:119–120

    Article  PubMed  CAS  Google Scholar 

  10. Hennessy S, Leonard CE, Gagne JJ, Flory JH, Han X, Brensinger CM, Bilker WB (2016) Pharmacoepidemiologic methods for studying the health effects of drug–drug interactions. Clin Pharmacol Ther 99:92–100. https://doi.org/10.1002/cpt.277

    Article  PubMed  CAS  Google Scholar 

  11. Lorberbaum T, Sampson KJ, Chang JB, Iyer V, Woosley RL, Kass RS, Tatonetti NP (2016) Coupling data mining and laboratory experiments to discover drug interactions causing QT prolongation. J Am Coll Cardiol 68:1756–1764. https://doi.org/10.1016/j.jacc.2016.07.761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lau MHM, Tenney JW (2017) Evaluation of drug–disease interactions and their association with unplanned hospital readmission utilizing STOPP Version 2 criteria. Geriatrics 2:33. https://doi.org/10.3390/geriatrics2040033

    Article  Google Scholar 

  13. Schenker S, Martin RR, Hoyumpa AM (1999) Antecedent liver disease and drug toxicity. J Hepatol 31:1098–1105

    Article  CAS  Google Scholar 

  14. Nolin TD, Naud J, Leblond FA, Pichette V (2008) Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin Pharmacol Ther 83:898–903. https://doi.org/10.1038/clpt.2008.59

    Article  PubMed  CAS  Google Scholar 

  15. Wang I, Hopper I (2014) Celiac disease and drug absorption: implications for cardiovascular therapeutics. Cardiovasc Ther 32:253–256. https://doi.org/10.1111/1755-5922.12094

    Article  PubMed  Google Scholar 

  16. Tran TH, Smith C, Mangione RA (2013) Drug absorption in celiac disease. Am J Health-Syst Pharm 70:2199–2206. https://doi.org/10.2146/ajhp120689

    Article  PubMed  CAS  Google Scholar 

  17. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149. https://doi.org/10.1146/annurev.pharmtox.46.120604.141059

    Article  PubMed  CAS  Google Scholar 

  18. Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S (2011) Disease–drug–drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 89:735–740. https://doi.org/10.1038/clpt.2011.35

    Article  PubMed  CAS  Google Scholar 

  19. Sanaee F, Clements JD, Waugh AWG, Fedorak RN, Lewanczuk R, Jamali F (2011) Drug–disease interaction: crohn’s disease elevates verapamil plasma concentrations but reduces response to the drug proportional to disease activity. Br J Clin Pharmacol 72:787–797. https://doi.org/10.1111/j.1365-2125.2011.04019.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, Ruby CM, Schmader KE (2006) Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther 28:1133–1143. https://doi.org/10.1016/j.clinthera.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  21. Casiero D, Frishman WH (2006) Cardiovascular complications of eating disorders. Cardiol Rev 14:227–231. https://doi.org/10.1097/01.crd.0000216745.96062.7c

    Article  PubMed  Google Scholar 

  22. Shojaie M, Eshraghian A (2008) Primary hypothyroidism presenting with Torsades de pointes type tachycardia: a case report. Cases J 1:298. https://doi.org/10.1186/1757-1626-1-298

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ker J (2012) Thyroxine and cardiac electrophysiology—a forgotten physiological duo? Thyr Res 5:8. https://doi.org/10.1186/1756-6614-5-8

    Article  Google Scholar 

  24. Lazzerini PE, Acampa M, Guideri F, Capecchi PL, Campanella V, Morozzi G, Galeazzi M, Marcolongo R, Laghi-Pasini F (2004) Prolongation of the corrected QT interval in adult patients with anti-Ro/SSA-positive connective tissue diseases. Arthritis Rheum 50:1248–1252. https://doi.org/10.1002/art.20130

    Article  PubMed  Google Scholar 

  25. Franjic L, House SL, Vitkovitsky I, Halcomb SE (2012) QTc prolongation is associated with hypokalemia and hypocalcemia in emergency department patients. Conference abstracts and posters. Paper 12

  26. Huang TC, Cecchin FC, Mahoney P, Portman MA (2000) Corrected QT interval (QTc) prolongation and syncope associated with pseudohypoparathyroidism and hypocalcemia. J Pediatr 136:404–407. https://doi.org/10.1067/mpd.2000.103447

    Article  PubMed  CAS  Google Scholar 

  27. Kallergis EM, Goudis CA, Simantirakis EN, Kochiadakis GE, Vardas PE (2012) Mechanisms, risk factors, and management of acquired long QT syndrome: a comprehensive review. Sci World J 2012:212178. https://doi.org/10.1100/2012/212178

    Article  Google Scholar 

  28. Efstratiadis G, Sarigianni M, Gougourelas I (2006) Hypomagnesemia and cardiovascular system. Hippokratia 10:147–152

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Rothenbuhler A, Marchand I, Bougnères P, Linglart A (2010) Risk of corrected QT interval prolongation after pamidronate infusion in children. J Clin Endocrinol Metab 95:3768–3770. https://doi.org/10.1210/jc.2009-2814

    Article  PubMed  CAS  Google Scholar 

  30. Oiwa H, Mokuda S (2015) Severe hypocalcemia and prolonged QT interval due to denosumab in an elderly woman with rheumatoid arthritis and chronic kidney disease. Letter to Editor. Eur J Rheumatol. https://doi.org/10.5152/eurjrheum.2015.0049

    Article  Google Scholar 

  31. Veltri KT, Mason C (2015) Medication-induced Hypokalemia. Pharm Ther 40:185–190

    Google Scholar 

  32. Liljeqvist JA, Edvardsson N (1989) Torsade de pointes tachycardias induced by overdosage of zimeldine. J Cardiovasc Pharmacol 14:666–670

    Article  PubMed  CAS  Google Scholar 

  33. Kumar V, Khosla S, Stancu M (2017) Torsade de pointes induced by hypokalemia from imipenem and piperacillin. Case Rep Cardiol 2017:4565182. https://doi.org/10.1155/2017/4565182

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zeuli JD, Wilson JW, Estes LL (2013) Effect of combined fluoroquinolone and azole use on QT prolongation in hematology patients. Antimicrob Agents Chemother 57:1121–1127. https://doi.org/10.1128/AAC.00958-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Albert RK, Schuller JL, COPD Clinical Research Network (2014) Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med 189:1173–1180. https://doi.org/10.1164/rccm.201402-0385ci

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Patel N, Wiśniowska B, Jamei M, Polak S (2018) Real patient and its virtual twin: application of quantitative systems toxicology modelling in the cardiac safety assessment of citalopram. Am Assoc Pharm Sci J 20:6

    Google Scholar 

  37. Tucker GT (2017) Personalized drug dosage—closing the loop. Pharm Res 34:1539–1543. https://doi.org/10.1007/s11095-016-2076-0

    Article  PubMed  CAS  Google Scholar 

  38. Kuusela TA, Jartti TT, Tahvanainen KU, Kaila TJ (2005) Prolongation of QT interval by terbutaline in healthy subjects. J Cardiovasc Pharmacol 45:175–181

    Article  PubMed  CAS  Google Scholar 

  39. Lecaillon JB, Kaiser G, Palmisano M, Morgan J, Cioppa GD (1999) Pharmacokinetics and tolerability of formoterol in healthy volunteers after a single high dose of Foradil dry powder inhalation via Aerolizer. Eur J Clin Pharmacol 55:131–138

    Article  PubMed  CAS  Google Scholar 

  40. Clifton GD, Hunt BA, Patel RC, Burki NK (1990) Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses. Am Rev Respir Dis 141:575–579. https://doi.org/10.1164/ajrccm/141.3.575

    Article  PubMed  CAS  Google Scholar 

  41. Tveskov C, Djurhuus MS, Klitgaard NA, Egstrup K (1994) Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta 2-adrenergic stimulation with terbutaline in healthy subjects. Chest 106:1654–1659

    Article  PubMed  CAS  Google Scholar 

  42. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Circ Physiol 286:H1573–H1589. https://doi.org/10.1152/ajpheart.00794.2003

    Article  Google Scholar 

  43. Polak S, Wisniowska B, Fijorek K, Glinka A, Mendyk A (2014) In vitro-in vivo extrapolation of drug-induced proarrhythmia predictions at the population level. Drug Discov Today 19:275–281. https://doi.org/10.1016/j.drudis.2013.10.009

    Article  PubMed  CAS  Google Scholar 

  44. Fijorek K, Patel N, Klima L, Stolarz-Skrzypek K, Kawecka-Jaszcz K, Polak S (2013) Age and gender dependent heart rate circadian model development and performance verification on the proarrhythmic drug case study. Theor Biol Med Model. https://doi.org/10.1186/1742-4682-10-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fijorek K, Puskulluoglu M, Polak S (2013) Circadian models of serum potassium, sodium, and calcium concentrations in healthy individuals and their application to cardiac electrophysiology simulations at individual level. Comput Math Methods Med 2013:429037. https://doi.org/10.1155/2013/429037

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polak S, Fijorek K (2012) Inter-individual variability in the pre-clinical drug cardiotoxic safety assessment analysis of the age-cardiomyocytes electric capacitance dependence. J Cardiovasc Transl Res 5:321–332. https://doi.org/10.1007/s12265-012-9357-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bazett H (1997) An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol 2:177–194

    Article  Google Scholar 

  48. Karjalainen J, Viitasalo M, Mänttäri M, Manninen V (1994) Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. J Am Coll Cardiol 23:1547–1553

    Article  PubMed  CAS  Google Scholar 

  49. Wiśniowska B, Mendyk A, Szlęk J, Kołaczkowski M, Polak S (2015) Enhanced QSAR models for drug-triggered inhibition of the main cardiac ion currents. J Appl Toxicol JAT 35:1030–1039. https://doi.org/10.1002/jat.3095

    Article  PubMed  CAS  Google Scholar 

  50. Kjeldsen K (2010) Hypokalemia and sudden cardiac death. Exp Clin Cardiol 15:e96–e99

    PubMed  PubMed Central  Google Scholar 

  51. Liamis R, Rodenburg E, Hofman A, Zietse R, Stricker B, Hoorn E (2013) Electrolyte disorders in community subjects: prevalence and risk factors. Am J Med 126:256–263

    Article  PubMed  CAS  Google Scholar 

  52. Lam MH, Chau SW, Wing Y (2009) High prevalence of hypokalemia in acute psychiatric inpatients. Gen Hosp Psychiatry 31:262–265. https://doi.org/10.1016/j.genhosppsych.2009.02.007

    Article  PubMed  Google Scholar 

  53. Widodo D, Setiawan B, Chen K, Nainggolan L, Santoso WD (2006) The prevalence of hypokalemia in hospitalized patients with infectious diseases problem at Cipto Mangunkusumo Hospital, Jakarta. Acta Med Indones 38:202–205

    PubMed  Google Scholar 

  54. Bardak S, Turgutalp K, Koyuncu MB, Harı H, Helvacı I, Ovla D, Horoz M, Demir S, Kıykım A (2017) Community-acquired hypokalemia in elderly patients: related factors and clinical outcomes. Int Urol Nephrol 49:483–489. https://doi.org/10.1007/s11255-016-1489-3

    Article  PubMed  CAS  Google Scholar 

  55. Takahashi S, Driscoll BF, Law MJ, Sokoloff L (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci USA 92:4616–4620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kones RJ (1976) Potassium metabolism in the normal and ischemic heart cell. Int J Clin Pharmacol Biopharm 13:269–291

    PubMed  CAS  Google Scholar 

  57. Palmer BF (2015) Regulation of potassium homeostasis. Clin J Am Soc Nephrol 10:1050–1060. https://doi.org/10.2215/CJN.08580813

    Article  PubMed  CAS  Google Scholar 

  58. Kannankeril P, Roden DM, Darbar D (2010) Drug-induced long QT syndrome. Pharmacol Rev 62:760–781. https://doi.org/10.1124/pr.110.003723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Food and Drug Administration HHS (2005) International conference on harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs; availability. Notice. Fed Regist 70:61134-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Wiśniowska.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiśniowska, B., Polak, S. Drug–physiology interaction and its influence on the QT prolongation-mechanistic modeling study. J Pharmacokinet Pharmacodyn 45, 483–490 (2018). https://doi.org/10.1007/s10928-018-9583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-018-9583-z

Keywords