Advertisement

A pharmacokinetic model for amiodarone in infants developed from an opportunistic sampling trial and published literature data

  • Samantha H. Dallefeld
  • Andrew M. Atz
  • Ram Yogev
  • Janice E. Sullivan
  • Amira Al-Uzri
  • Susan R. Mendley
  • Matthew Laughon
  • Christoph P. Hornik
  • Chiara Melloni
  • Barrie Harper
  • Andrew Lewandowski
  • Jeff Mitchell
  • Huali Wu
  • Thomas P. Green
  • Michael Cohen-Wolkowiez
Original Paper

Abstract

Amiodarone is a first-line antiarrhythmic for life-threatening ventricular fibrillation or ventricular tachycardia in children, yet little is known about its pharmacokinetics (PK) in this population. We developed a population PK (PopPK) model using samples collected via an opportunistic study design of children receiving amiodarone per standard of care supplemented by amiodarone PK data from the literature. Both study data and literature data were predominantly from infants < 2 years old, so our analysis was restricted to this group. The final combined dataset consisted of 266 plasma drug concentrations in 45 subjects with a median (interquartile range) postnatal age of 40.1 (11.0–120.4) days and weight of 3.9 (3.1–5.1) kg. Since the median sampling time after the first dose was short (study: 95 h; literature: 72 h) relative to the terminal half-life estimated in adult PopPK studies, values of the deep compartment volume and flow were fixed to literature values. A 3-compartment model best described the data and was validated by visual predictive checks and non-parametric bootstrap analysis. The final model included body weight as a covariate on all volumes and on both inter-compartmental and elimination clearances. The empiric Bayesian estimates for clearance (CL), volume of distribution at steady state, and terminal half-life were 0.25 (90% CL 0.14–0.36) L/kg/h, 93 (68–174) L/kg, and 266 (197–477) h, respectively. These studies will provide useful information for future PopPK studies of amiodarone in infants and children that could improve dosage regimens.

Keywords

Amiodarone Population pharmacokinetics Pediatrics Cardiac arrhythmias 

Notes

Acknowledgements

This work was funded under National Institute of Child Health and Human Development contract HHSN275201000003I for the Pediatric Trials Network (Principal Investigator Daniel K. Benjamin). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The assay measuring amiodarone concentrations was performed at OpAns Laboratory (Durham, NC).

The PTN publications committee

Gary Furda, Duke Clinical Research Institute, Durham, NC; Daniel K. Benjamin, Duke Clinical Research Institute, Durham, NC; Edmund Capparelli, UC San Diego, San Diego, CA; Gregory L. Kearns, Arkansas Children’s Hospital Research Institute, Little Rock, AR; Ian M. Paul, Penn State College of Medicine, Hershey, PA; Christoph P. Hornik, Duke Clinical Research Institute, Durham, NC; Kelly Wade, Children’s Hospital of Philadelphia, Philadelphia, PA.

The Eunice Kennedy Shriver National Institute of Child Health and Human Development

David Siegel and Perdita Taylor-Zapata

The EMMES Corporation (Data Coordinating Center)

Ravinder Anand and Gina Simone

Pediatric trials network amiodarone study team, principal investigators (PIs), and study coordinators (SCs)

Duke Clinical Research Institute: Tammy Day (clinical research associate). Medical University of South Carolina Children’s Hospital: Hibah Al Nasiri (SC), Ann Frampton (SC), Patricia Infinger (SC). Ann and Robert H. Lurie Children’s Hospital of Chicago: Laura Fearn (SC). University of Louisville-KCPCRU and Norton Children’s Hospital: Tressa Bratton (SC), Jacqueline Perry (SC), Jennifer Comings (SC). Oregon Health and Science University: Kira Clark (SC). University of Maryland: Donna Cannonier (SC). University of North Carolina at Chapel Hill: Janice Bernhardt (SC). The Children’s Hospital Colorado: Peter Mourani (Site PI), Susan Gunn (SC). University of Virginia Children’s Hospital: Michelle Adu-Darko (Site PI), Robin Kelly (SC). Rainbow Babies and Children’s Hospital: Stuart Goldstein (Site PI), Tara Terrell (SC). Duke University Medical Center: Kevin Watt (Site PI), Samantha Wrenn (SC), Christie Milleson (SC).

Disclosures

S.H.D. receives support from the National Institutes of Health (NIH)/National Institute of General Medicine Sciences (T32GM086330). C.P.H receives salary support for research from the National Center for Advancing Translational Sciences of the NIH (UL1TR001117). M.C.W. receives support for research from the NIH (1R01-HD076676-01A1), the National Institute of Allergy and Infectious Diseases (HHSN272201500006I and HHSN272201300017I), the National Institute of Child Health and Human Development (HHSN275201000003I), the Biomedical Advanced Research and Development Authority (HHSO100201300009C), and industry for drug development in adults and children (www.dcri.duke.edu/research/coi.jsp). The other authors have no potential conflicts of interest.

Supplementary material

10928_2018_9576_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)
10928_2018_9576_MOESM2_ESM.pdf (74 kb)
Supplementary material Fig. 1 Standard goodness-of-fit plots of the final model depicting only the PTN dataset. (The same data are represented by Fig. 1 but are presented here because the PTN data points are largely obscured in that figure by the larger number of data points from the Ramusovic dataset.) Observed versus population (A) and individual (B) predictions for the amiodarone model. The line of identity is indicated by a solid line. Conditional weighted residuals (CWRES) versus time after dose (C) and population predictions (D) for the base amiodarone PK model (PDF 73 kb)
10928_2018_9576_MOESM3_ESM.pdf (655 kb)
Supplementary material Fig. 2 Observed serum amiodarone concentrations in each patient versus time (hours). In subjects with more than one concentration, the model-predicted concentration–time course is illustrated with a solid line for the duration of the drug administration (PDF 655 kb)

References

  1. 1.
    Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truitt T, Potts J, Ornato JP, Berg RA, Registry National, of Cardiopulmonary Resuscitation Investigators (2006) First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 295:50–57CrossRefPubMedGoogle Scholar
  2. 2.
    Samson RA, Nadkarni VM, Meaney PA, Carey SM, Berg MD, Berg RA, American Heart Association National Registry of CPR Investigators (2006) Outcomes of in-hospital ventricular fibrillation in children. N Engl J Med 354:2328–2339CrossRefPubMedGoogle Scholar
  3. 3.
    Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, Berg MD, de Caen AR, Fink EL, Freid EB, Hickey RW, Marino BS, Nadkarni VM, Proctor LT, Qureshi FA, Sartorelli K, Topjian A, van der Jagt EW, Zaritsky AL (2010) Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:S876–S908CrossRefPubMedGoogle Scholar
  4. 4.
    Silva JN, Erickson CC, Carter CD, Greene EA, Kantoch M, Collins KK, Miyake CY, Carboni MP, Rhee EK, Papez A, Anand V, Bowman TM, Van Hare GF, Participating Members of Pediatric and Congenital Electrophysiology Society (PACES) (2014) Management of pediatric tachyarrhythmias on mechanical support. Circ Arrhythm Electrophysiol 7:658–663CrossRefPubMedGoogle Scholar
  5. 5.
    Etheridge SP, Craig JE, Compton SJ (2001) Amiodarone is safe and highly effective therapy for supraventricular tachycardia in infants. Am Heart J 141:105–110CrossRefPubMedGoogle Scholar
  6. 6.
    Burri S, Hug MI, Bauersfeld U (2003) Efficacy and safety of intravenous amiodarone for incessant tachycardias in infants. Eur J Pediatr 162:880–884CrossRefPubMedGoogle Scholar
  7. 7.
    Elsherbiny ME, El-Kadi AO, Brocks DR (2008) The metabolism of amiodarone by various CYP isoenzymes of human and rat, and the inhibitory influence of ketoconazole. J Pharm Pharm Sci 11:147–159CrossRefPubMedGoogle Scholar
  8. 8.
    Pollak PT, Bouillon T, Shafer SL (2000) Population pharmacokinetics of long-term oral amiodarone therapy. Clin Pharmacol Ther 67:642–652CrossRefPubMedGoogle Scholar
  9. 9.
    Chow MS (1996) Intravenous amiodarone: pharmacology, pharmacokinetics, and clinical use. Ann Pharmacother 30:637–643CrossRefPubMedGoogle Scholar
  10. 10.
    Freedman MD, Somberg JC (1991) Pharmacology and pharmacokinetics of amiodarone. J Clin Pharmacol 31:1061–1069CrossRefPubMedGoogle Scholar
  11. 11.
    Araki R, Yukawa E, Nakashima MN, Fukuchi H, Sasaki H, Yano K, Nakashima M (2011) Population pharmacokinetic investigation for optimization of amiodarone therapy in Japanese patients. Ther Drug Monit 33:750–756CrossRefPubMedGoogle Scholar
  12. 12.
    Kannan R, Miller S, Singh BN (1985) Tissue uptake and metabolism of amiodarone after chronic administration in rabbits. Drug Metab Dispos 13:646–650PubMedGoogle Scholar
  13. 13.
    Korth-Bradley JM, Rose GM, de Vane PJ, Peters J, Chiang ST (1996) Population pharmacokinetics of intravenous amiodarone in patients with refractory ventricular tachycardia/fibrillation. J Clin Pharmacol 36:715–719CrossRefPubMedGoogle Scholar
  14. 14.
    Plomp TA, van Rossum JM, Robles de Medina EO, van Lier T, Maes RA (1984) Pharmacokinetics and body distribution of amiodarone in man. Arzneimittelforschung 34:513–520PubMedGoogle Scholar
  15. 15.
    Riva E, Gerna M, Latini R, Giani P, Volpi A, Maggioni A (1982) Pharmacokinetics of amiodarone in man. J Cardiovasc Pharmacol 4:264–269CrossRefPubMedGoogle Scholar
  16. 16.
    Vadiei K, Troy S, Korth-Bradley J, Chiang ST, Zimmerman JJ (1997) Population pharmacokinetics of intravenous amiodarone and comparison with two-stage pharmacokinetic analysis. J Clin Pharmacol 37:610–617CrossRefPubMedGoogle Scholar
  17. 17.
    Veronese ME, McLean S, Hendriks R (1988) Plasma protein binding of amiodarone in a patient population: measurement by erythrocyte partitioning and a novel glass-binding method. Br J Clin Pharmacol 26:721–731CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wyss PA, Moor MJ, Bickel MH (1990) Single-dose kinetics of tissue distribution, excretion and metabolism of amiodarone in rats. J Pharmacol Exp Ther 254:502–507PubMedGoogle Scholar
  19. 19.
    Kowey PR, Marinchak RA, Rials SJ, Bharucha D (1997) Pharmacologic and pharmacokinetic profile of class III antiarrhythmic drugs. Am J Cardiol 80:16g–23gCrossRefPubMedGoogle Scholar
  20. 20.
    Chang PM, Silka MJ, Moromisato DY, Bar-Cohen Y (2010) Amiodarone versus procainamide for the acute treatment of recurrent supraventricular tachycardia in pediatric patients. Circ Arrhythm Electrophysiol 3:134–140CrossRefPubMedGoogle Scholar
  21. 21.
    Dick M, Scott WA (1986) Amiodarone in pediatric patients. Clin Prog Electrophysiol Pacing 4:522–527CrossRefGoogle Scholar
  22. 22.
    Dieks JK, Klehs S, Müller MJ, Paul T, Krause U (2016) Adjunctive ivabradine in combination with amiodarone: a novel therapy for pediatric congenital junctional ectopic tachycardia. Heart Rhythm 13:1297–1302CrossRefPubMedGoogle Scholar
  23. 23.
    Dubin AM, Van Hare GF, Collins KK, Bernstein D, Rosenthal DN (2001) Survey of current practices in use of amiodarone and implantable cardioverter defibrillators in pediatric patients with end-stage heart failure. Am J Cardiol 88:809–810CrossRefPubMedGoogle Scholar
  24. 24.
    Fishberger SB, Hannan RL, Welch EM, Rossi AF (2009) Amiodarone for pediatric resuscitation: a word of caution. Pediatr Cardiol 30:1006–1008CrossRefPubMedGoogle Scholar
  25. 25.
    Haas NA, Camphausen CK (2008) Impact of early and standardized treatment with amiodarone on therapeutic success and outcome in pediatric patients with postoperative tachyarrhythmia. J Thorac Cardiovasc Surg 136:1215–1222CrossRefPubMedGoogle Scholar
  26. 26.
    Hasegawa T, Oshima Y, Maruo A, Matsuhisa H, Kadowaki T, Noda R (2013) Landiolol for junctional ectopic tachycardia refractory to amiodarone after pediatric cardiac surgery. Gen Thorac Cardiovasc Surg 61:350–352CrossRefPubMedGoogle Scholar
  27. 27.
    Hatib NA, Lee JH, Loh LE, Mok YH, Menon AP, Loh TF, Tan TH (2016) Accidental intra-arterial infusion of amiodarone in a pediatric patient with atrial ectopic tachycardia. Crit Care Med 44:e1013–e1014CrossRefPubMedGoogle Scholar
  28. 28.
    Perry JC, Fenrich AL, Hulse JE, Triedman JK, Friedman RA, Lamberti JJ (1996) Pediatric use of intravenous amiodarone: efficacy and safety in critically Ill patients from a multicenter protocol. J Am Coll Cardiol 27:1246–1250CrossRefPubMedGoogle Scholar
  29. 29.
    Mazic U, Berden P, Podnar T (2004) Repetitive paroxysms of supraventricular tachyarrhythmias triggered during pediatric cardiac interventions: suppression after short infusion of amiodarone. Pediatr Cardiol 25:684–685CrossRefPubMedGoogle Scholar
  30. 30.
    Moffett BS, Valdes SO, Kim JJ (2013) Amiodarone monitoring practices in pediatric hospitals in the United States. Pediatr Cardiol 34:1762–1766CrossRefPubMedGoogle Scholar
  31. 31.
    Nalli N, Stewart-Teixeira L, Dipchand AI (2006) Amiodarone-sirolimus/tacrolimus interaction in a pediatric heart transplant patient. Pediatr Transplant 10:736–739CrossRefPubMedGoogle Scholar
  32. 32.
    Paul T, Guccione P (1994) New antiarrhythmic drugs in pediatric use: amiodarone. Pediatr Cardiol 15:132–138CrossRefPubMedGoogle Scholar
  33. 33.
    Perry JC, Fenrich AL, Hulse JE, Triedman JK, Friedman RA, Lamberti JJ (1996) Pediatric use of intravenous amiodarone: efficacy and safety in critically ill patients from a multicenter protocol. J Am Coll Cardiol 27:1246–1250CrossRefPubMedGoogle Scholar
  34. 34.
    Ramusovic S, Läer S, Meibohm B, Lagler FB, Paul T (2013) Pharmacokinetics of intravenous amiodarone in children. Arch Dis Child 98:989–993CrossRefPubMedGoogle Scholar
  35. 35.
    Saharan S, Balaji S (2015) Cardiovascular collapse during amiodarone infusion in a hemodynamically compromised child with refractory supraventricular tachycardia. Ann Pediatr Cardiol 8:50–52CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Saul JP, Scott WA, Brown S, Marantz P, Acevedo V, Etheridge SP, Perry JC, Triedman JK, Burriss SW, Cargo P, Graepel J, Koskelo EK, Wang R, Intravenous Amiodarone Pediatric Investigators (2005) Intravenous amiodarone for incessant tachyarrhythmias in children: a randomized, double-blind, antiarrhythmic drug trial. Circulation 112:3470–3477CrossRefPubMedGoogle Scholar
  37. 37.
    Tsuda E, Matsuo M, Sakaguchi H, Hayashi T, Hosoda K, Miyazaki A (2010) Combined amiodarone and low-dose carvedilol treatment for severe heart failure in childhood. Pediatr Int 52:e39–e42CrossRefPubMedGoogle Scholar
  38. 38.
    Valdes SO, Donoghue AJ, Hoyme DB, Hammond R, Berg MD, Berg RA, Samson RA, American Heart Association Get With The Guidelines-Resuscitation Investigators (2014) Outcomes associated with amiodarone and lidocaine in the treatment of in-hospital pediatric cardiac arrest with pulseless ventricular tachycardia or ventricular fibrillation. Resuscitation 85:381–386CrossRefPubMedGoogle Scholar
  39. 39.
    Gonzalez D, Melloni C, Yogev R, Poindexter BB, Mendley SR, Delmore P, Sullivan JE, Autmizguine J, Lewandowski A, Harper B, Watt KM, Lewis KC, Capparelli EV, Benjamin DK Jr, Cohen-Wolkowiez M, Pharmaceuticals Best, for Children Act—Pediatric Trials Network Administrative Core Committee (2014) Use of opportunistic clinical data and a population pharmacokinetic model to support dosing of clindamycin for premature infants to adolescents. Clin Pharmacol Ther 96:429–437CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Holford N, Heo Y, Anderson B (2013) A pharmacokinetic standard for babies and adults. J Pharm Sci 102:2941–2952CrossRefPubMedGoogle Scholar
  41. 41.
    Weibel ER (2002) Physiology: the pitfalls of power laws. Nature 417:131–132CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332CrossRefPubMedGoogle Scholar
  43. 43.
    Dennis J, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Class Appl Math 10(1137/1):9781611971200Google Scholar
  44. 44.
    Upton RN (2004) Calculating the hybrid (macro) rate constants of a three-compartment mamillary pharmacokinetic model from known micro-rate constants. J Pharmacol Toxicol Methods 49:65–68CrossRefPubMedGoogle Scholar
  45. 45.
    Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT (2011) Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 3:53–72CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Batchelor HK, Marriott JF (2015) Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 79:395–404CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Holt DW, Tucker GT, Jackson PR, Storey GC (1983) Amiodarone pharmacokinetics. Am Heart J 106:840–847CrossRefPubMedGoogle Scholar
  48. 48.
    Hines RN (2013) Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm 452:3–7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Samantha H. Dallefeld
    • 1
  • Andrew M. Atz
    • 2
  • Ram Yogev
    • 3
  • Janice E. Sullivan
    • 4
  • Amira Al-Uzri
    • 5
  • Susan R. Mendley
    • 6
  • Matthew Laughon
    • 7
  • Christoph P. Hornik
    • 1
  • Chiara Melloni
    • 1
  • Barrie Harper
    • 1
  • Andrew Lewandowski
    • 8
  • Jeff Mitchell
    • 8
  • Huali Wu
    • 1
  • Thomas P. Green
    • 3
  • Michael Cohen-Wolkowiez
    • 1
  1. 1.Duke Clinical Research InstituteDuke University School of MedicineDurhamUSA
  2. 2.Medical University of South Carolina Children’s HospitalCharlestonUSA
  3. 3.Ann and Robert H. Lurie Children’s Hospital of Chicago/Northwestern UniversityChicagoUSA
  4. 4.University of Louisville-KCPCRU and Norton Children’s HospitalLouisvilleUSA
  5. 5.Oregon Health and Science UniversityPortlandUSA
  6. 6.The University of MarylandCollege ParkUSA
  7. 7.University of North Carolina-Chapel HillChapel HillUSA
  8. 8.The EMMES CorporationRockvilleUSA

Personalised recommendations